论文标题

部分可观测时空混沌系统的无模型预测

Terahertz PHASR Scanner with 2 kHz, 100 picosecond Time-Domain Trace Acquisition Rate and an Extended Field-of-View Based on a Heliostat Design

论文作者

Harris, Zachery B., Arbab, M. Hassan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recently, we introduced a Portable HAndheld Spectral Reflection (PHASR) Scanner to allow THz Time-Domain Spectroscopic (THz-TDS) imaging in clinical and industrial settings using a fiber-coupled and alignment-free telecentric beam steering design. The key limitations of the version 1.0 of the PHASR Scanner were its field-of-view and speed of time-domain trace acquisition. In this paper, we address these limitations by introducing a heliostat geometry for beam scanning to achieve an extended field-of-view, and by reconfiguring the ASynchronous OPtical Sampling (ASOPS) system to perform Electronically Controlled OPtical Sampling (ECOPS) measurements. The former change improved the deflection range of the beam, while also drastically reducing the coupling of the two scanning axes, the combination of which resulted in a larger than four-fold increase in the FOV area. The latter change significantly improves the acquisition speed and frequency domain performance simultaneously by improving measurement efficiency. To accomplish this, we characterized the non-linear time-axis sampling behavior of the electro-mechanical system in the ECOPS mode. We proposed methods to model and correct the non-linear time-axis distortions and tested the performance of the high-speed ECOPS trace acquisition. Therefore, here we introduce the PHASR Scanner version 2.0, which is capable of imaging a 40$\times$27 mm$^2$ FOV with 2000 traces per second over a 100 picosecond TDS range. This new scanner represents a significant leap towards translating the THz-TDS technology from the lab bench to the bedside for real-time clinical imaging applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源