论文标题

部分可观测时空混沌系统的无模型预测

To update or not to update? Neurons at equilibrium in deep models

论文作者

Bragagnolo, Andrea, Tartaglione, Enzo, Grangetto, Marco

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent advances in deep learning optimization showed that, with some a-posteriori information on fully-trained models, it is possible to match the same performance by simply training a subset of their parameters. Such a discovery has a broad impact from theory to applications, driving the research towards methods to identify the minimum subset of parameters to train without look-ahead information exploitation. However, the methods proposed do not match the state-of-the-art performance, and rely on unstructured sparsely connected models. In this work we shift our focus from the single parameters to the behavior of the whole neuron, exploiting the concept of neuronal equilibrium (NEq). When a neuron is in a configuration at equilibrium (meaning that it has learned a specific input-output relationship), we can halt its update; on the contrary, when a neuron is at non-equilibrium, we let its state evolve towards an equilibrium state, updating its parameters. The proposed approach has been tested on different state-of-the-art learning strategies and tasks, validating NEq and observing that the neuronal equilibrium depends on the specific learning setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源