论文标题
关于在多机器人方案中分散联合加强学习
On Decentralizing Federated Reinforcement Learning in Multi-Robot Scenarios
论文作者
论文摘要
联合学习(FL)允许在几个计算设备上进行协作汇总的学习信息,并在其中共享同样的信息,从而解决了隐私问题和巨大带宽的需求。 FL技术通常使用中央服务器或云来汇总从设备接收的模型。这种集中的FL技术遭受了固有的问题,例如中央节点的故障和频道带宽中的瓶颈。当FL与用作设备的连接机器人结合使用时,中央控制实体的故障会导致混乱的情况。本文介绍了基于移动代理的范例,以分散多机器人方案中的FL。我们使用Webot,一种流行的免费开源机器人模拟器和移动代理平台塔塔鲁斯(Tartarus),我们提出了一种在一组连接的机器人中分散联合学习的方法。随着在不同的连接计算系统上运行的Webot,我们展示了移动代理如何执行分散的联合加固学习(DFRL)的任务。通过使用Q-Learning和SARSA进行的实验获得的结果,通过汇总其相应的Q-表,显示了在机器人技术域中使用分散的FL的生存能力。由于所提出的工作可以与其他学习算法和真正的机器人结合使用,因此可以使用异质学习算法在多机器人方案中同时使用异质学习算法进行研究。
Federated Learning (FL) allows for collaboratively aggregating learned information across several computing devices and sharing the same amongst them, thereby tackling issues of privacy and the need of huge bandwidth. FL techniques generally use a central server or cloud for aggregating the models received from the devices. Such centralized FL techniques suffer from inherent problems such as failure of the central node and bottlenecks in channel bandwidth. When FL is used in conjunction with connected robots serving as devices, a failure of the central controlling entity can lead to a chaotic situation. This paper describes a mobile agent based paradigm to decentralize FL in multi-robot scenarios. Using Webots, a popular free open-source robot simulator, and Tartarus, a mobile agent platform, we present a methodology to decentralize federated learning in a set of connected robots. With Webots running on different connected computing systems, we show how mobile agents can perform the task of Decentralized Federated Reinforcement Learning (dFRL). Results obtained from experiments carried out using Q-learning and SARSA by aggregating their corresponding Q-tables, show the viability of using decentralized FL in the domain of robotics. Since the proposed work can be used in conjunction with other learning algorithms and also real robots, it can act as a vital tool for the study of decentralized FL using heterogeneous learning algorithms concurrently in multi-robot scenarios.