论文标题
用于软机器人和混合机器人的大规模平行的3D模拟器
A Massively-Parallel 3D Simulator for Soft and Hybrid Robots
论文作者
论文摘要
仿真是用于创建控制策略和测试各种物理参数的机器人技术的重要步骤。 Soft Robotics是一个领域,由于可变形材料组件的非线性以及其他创新且通常是复杂的物理特性,因此提出了模拟其主题的独特物理挑战。由于使用传统技术模拟柔软和异质物体的计算成本,刚性机器人模拟器不太适合模拟软机器人。因此,许多工程师必须构建自己为系统量身定制的一次性模拟器,或使用具有降低性能的现有模拟器。为了促进这项激动人心的技术的开发,这项工作为各种软机器人提供了交互式,准确和多功能的模拟器。我们的开源3D仿真引擎Cronos与可变形和刚性对象上的超快速性能的质量弹簧模型并行。我们的方法适用于多种非线性材料构型,包括高变形性,体积致动或异源刚度。这种多功能性提供了在单个机器人模拟中自由地混合材料和几何成分的能力。通过利用非线性胡克恩质量 - 弹簧系统的灵活性和可扩展性,该框架通过高度并行模型模拟柔软而刚性的对象,以实现近实时速度。我们描述了有效的GPU CUDA实施,我们证明了该实施是为了在消费级GPU卡上实现每秒超过10亿个元素的计算。通过将结果与Euler-Bernoulli束理论,固有频率预测和软性结构的经验数据进行比较,可以验证系统的动态物理准确性。
Simulation is an important step in robotics for creating control policies and testing various physical parameters. Soft robotics is a field that presents unique physical challenges for simulating its subjects due to the nonlinearity of deformable material components along with other innovative, and often complex, physical properties. Because of the computational cost of simulating soft and heterogeneous objects with traditional techniques, rigid robotics simulators are not well suited to simulating soft robots. Thus, many engineers must build their own one-off simulators tailored to their system, or use existing simulators with reduced performance. In order to facilitate the development of this exciting technology, this work presents an interactive-speed, accurate, and versatile simulator for a variety of types of soft robots. Cronos, our open-source 3D simulation engine, parallelizes a mass-spring model for ultra-fast performance on both deformable and rigid objects. Our approach is applicable to a wide array of nonlinear material configurations, including high deformability, volumetric actuation, or heterogenous stiffness. This versatility provides the ability to mix materials and geometric components freely within a single robot simulation. By exploiting the flexibility and scalability of nonlinear Hookean mass-spring systems, this framework simulates soft and rigid objects via a highly parallel model for near real-time speed. We describe an efficient GPU CUDA implementation, which we demonstrate to achieve computation of over 1 billion elements per second on consumer-grade GPU cards. Dynamic physical accuracy of the system is validated by comparing results to Euler-Bernoulli beam theory, natural frequency predictions, and empirical data of a soft structure under large deformation.