论文标题

拓扑Kagome Magnet TBMN $ _6 $ sn $ _6 $中的平坦光电电导率

Flat optical conductivity in the topological kagome magnet TbMn$_6$Sn$_6$

论文作者

Li, R. S., Zhang, Tan, Ma, Wenlong, Xu, S. X., Wu, Q., Yue, L., Zhang, S. J., Liu, Q. M., Wang, Z. X., Hu, T. C., Zhou, X. Y., Wu, D., Dong, T., Jia, Shuang, Weng, Hongming, Wang, N. L.

论文摘要

Kagome磁铁TBMN $ _6 $ sn $ _6 $是一种新型的拓扑材料,已知可以支持异国量子磁状态。实验工作已经确定TBMN $ _6 $ sn $ _6 $主机狄拉克电子状态可能会导致拓扑和Chern量子阶段,但是TBMN $ _6 $ sn $ _6 $的DIRAC FERMIONS的光学响应及其属性仍有待探索。在这里,我们执行光谱测量,结合了TBMN $ _6 $ sn $ _6 $的单晶样品的第一原理计算,以研究相关的外来现象。 tbmn $ _6 $ sn $ _6 $在实验中,在1800至3000 cm $^{ - 1} $(220-370 MEV)的广泛范围内展示了与频率无关的光电频谱。理论带结构和光导率光谱是用几个移位的费米能量计算的,以与实验进行比较。费米能量为0.56 EV转移的理论光谱与我们的实验结果一致。此外,巨大的Quasi-Two-two(Quasi-2d)狄拉克频带,它们具有$ k_x $ - $ k_y $ plane的线性带分散,并且沿着$ k_z $方向没有频段分散,并存在靠近移位的Fermi Energy。根据紧密结合模型分析,准2D狄拉克带产生了平坦的光学电导率,而其值则小于计算和实验的十分之一。这表明其他微不足道的带也有助于平坦的光学电导率。

Kagome magnet TbMn$_6$Sn$_6$ is a new type of topological material that is known to support exotic quantum magnetic states. Experimental work has identified that TbMn$_6$Sn$_6$ hosts Dirac electronic states that could lead to topological and Chern quantum phases, but the optical response of the Dirac fermions of TbMn$_6$Sn$_6$ and its properties remain to be explored. Here, we perform optical spectroscopy measurement combined with first-principles calculations on single-crystal sample of TbMn$_6$Sn$_6$ to investigate the associated exotic phenomena. TbMn$_6$Sn$_6$ exhibits frequency-independent optical conductivity spectra in a broad range from 1800 to 3000 cm$^{-1}$ (220-370 meV) in experiments. The theoretical band structures and optical conductivity spectra are calculated with several shifted Fermi energy to compare with the experiment. The theoretical spectra with 0.56 eV shift for Fermi energy are well consistent with our experimental results. Besides, the massive quasi-two-dimensional (quasi-2D) Dirac bands, which have linear band dispersion in $k_x$-$k_y$ plane and no band dispersion along the $k_z$ direction, exist close to the shifted Fermi energy. According to tight-binding model analysis, the quasi-2D Dirac bands give rise to a flat optical conductivity, while its value is smaller than, about one tenth of, that from the calculations and experiments. It indicates that the other trivial bands also contribute to the flat optical conductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源