论文标题
通过高斯混合模型的全球和局部特征在图像语义分段上
Global and Local Features through Gaussian Mixture Models on Image Semantic Segmentation
论文作者
论文摘要
语义细分任务旨在在像素级别上进行密集分类。深层模型在解决这项任务方面表现出了进展。但是,这些方法剩下的一个问题是空间精度的丧失,通常是在分段对象的边界上产生的。我们提出的模型通过为特征表示形式提供内部结构来解决此问题,同时提取支持前者的全局表示形式。为了适应内部结构,在训练过程中,我们预测数据中的高斯混合模型,该模型与跳过连接和解码阶段合并,有助于避免错误的感应偏见。此外,我们的结果表明,我们可以通过提供群集行为并将其组合来通过提供学习表征(全球和本地)来改善语义细分。最后,我们提出的结果证明了我们在城市景观和合成数据集方面的进步。
The semantic segmentation task aims at dense classification at the pixel-wise level. Deep models exhibited progress in tackling this task. However, one remaining problem with these approaches is the loss of spatial precision, often produced at the segmented objects' boundaries. Our proposed model addresses this problem by providing an internal structure for the feature representations while extracting a global representation that supports the former. To fit the internal structure, during training, we predict a Gaussian Mixture Model from the data, which, merged with the skip connections and the decoding stage, helps avoid wrong inductive biases. Furthermore, our results show that we can improve semantic segmentation by providing both learning representations (global and local) with a clustering behavior and combining them. Finally, we present results demonstrating our advances in Cityscapes and Synthia datasets.