论文标题

混合身份,遗传分离的动作和振荡

Mixed identities, hereditarily separated actions and oscillation

论文作者

Ivanov, Aleksander, Zarzycki, Roland

论文摘要

给定拓扑$ g $ - 空间,我们考虑了以超过$ g $的参数的方程式。特别是,我们在带有参数的单词上制定了一些非常一般的条件,$ w(\ bar {y},\ bar {g})$在$ g $上保证了不平等$ w(\ bar {y},\ bar {g}),\ bar {g})\ neq 1 $在$ g $中具有解决方案。这些结果在某些典型情况下进行了说明,特别是汤普森组$ f $的标准操作,并考虑了分支组。 本文的主要结果以某种形式出现在第二作者的博士学位论文的第2节中(ARXIV:1308.6330)。

Given a topological $G$-space we consider equations with parameters over $G$. In particular we formulate some very general conditions on words with parameters $w(\bar{y},\bar{g})$ over $G$ which guarantee that the inequality $w(\bar{y},\bar{g})\neq 1$ has a solution in $G$. These results are illustrated in some typical situations, in particular standard actions of Thompson's group $F$ and branch groups are considered. The major results of this paper appeared in some form in Section 2 of the PhD thesis of the second author (avalable at arXiv:1308.6330).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源