论文标题

Sasaki地图对矫形空间的表征

A characterisation of orthomodular spaces by Sasaki maps

论文作者

Lindenhovius, Bert, Vetterlein, Thomas

论文摘要

鉴于Hilbert Space $ h $,一维子空间的集合$ p(h)$ $ h $的$ h $成为矫形器,当配备了$ h $上的内部产品引起的正交关系$ \ perp $。在这里,\ emph {Orthoset}是$ x $的一对$(x,\ perp)$和$ x $上的对称,irreflexive二进制关系$ \ perp $。在这项贡献中,我们研究了矫正器$(x,\ perp)$的哪些条件足以结论,即矫正器对$(p(h),\ perp)$同构成某些正数空间$ h $,其中\ emph emph {orthomodular space}是线性的空间。为了实现这一目标,我们在矫正器上介绍了\ emph {sasaki maps},这与萨萨基(Sasaki)在正数晶格上的预测密切相关。我们表明,对于某些正数空间的任何校正$(x,\ perp)$具有足够多的sasaki地图是同构至$(p(h),\ perp)$,我们在$(x,\ perp)上提供更多条件(x,\ perp)$,以确保$ h $实际上是$ \ nath $ \ nath $ \ nmath $ \ $ \ $ \ $ \ c.

Given a Hilbert space $H$, the set $P(H)$ of one-dimensional subspaces of $H$ becomes an orthoset when equipped with the orthogonality relation $\perp$ induced by the inner product on $H$. Here, an \emph{orthoset} is a pair $(X,\perp)$ of a set $X$ and a symmetric, irreflexive binary relation $\perp$ on $X$. In this contribution, we investigate what conditions on an orthoset $(X,\perp)$ are sufficient to conclude that the orthoset is isomorphic to $(P(H),\perp)$ for some orthomodular space $H$, where \emph{orthomodular spaces} are linear spaces that generalize Hilbert spaces. In order to achieve this goal, we introduce \emph{Sasaki maps} on orthosets, which are strongly related to Sasaki projections on orthomodular lattices. We show that any orthoset $(X,\perp)$ with sufficiently many Sasaki maps is isomorphic to $(P(H),\perp)$ for some orthomodular space, and we give more conditions on $(X,\perp)$ to assure that $H$ is actually a Hilbert space over $\mathbb R$, $\mathbb C$ or $\mathbb H$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源