论文标题
Nadaraya-Watson回归的训练核的异质治疗效果
Heterogeneous Treatment Effect with Trained Kernels of the Nadaraya-Watson Regression
论文作者
论文摘要
本文提出了一种估计条件平均治疗效果的新方法。它称为TNW-CATE(可训练的Nadaraya-Watson回归CATE),并且基于以下假设:控制数量很大,而处理的数量很少。 TNW-CATE使用Nadaraya-Watson回归来预测对照组和治疗组的患者的结果。 TNW-CATE背后的主要思想是通过使用特定形式的重量分享神经网络来训练Nadaraya-Watson回归的内核。该网络在控件上进行了训练,并用一组具有共享参数的神经子网替代标准内核,使每个子网都实现了可训练的内核,但是整个网络都实现了Nadaraya-Watson估计器。网络记住特征向量如何位于特征空间中。当源和目标数据的域相似时,所提出的方法类似于传输学习,但任务不同。各种数值仿真实验说明了TNW-CATE,并将其与众所周知的T-Learner,S-Learner和X-Learner进行比较,以进行几种类型的对照和治疗结果函数。 https://github.com/stasychbr/tnw-cate提供了实施TNW-CATE的算法的代码。
A new method for estimating the conditional average treatment effect is proposed in the paper. It is called TNW-CATE (the Trainable Nadaraya-Watson regression for CATE) and based on the assumption that the number of controls is rather large whereas the number of treatments is small. TNW-CATE uses the Nadaraya-Watson regression for predicting outcomes of patients from the control and treatment groups. The main idea behind TNW-CATE is to train kernels of the Nadaraya-Watson regression by using a weight sharing neural network of a specific form. The network is trained on controls, and it replaces standard kernels with a set of neural subnetworks with shared parameters such that every subnetwork implements the trainable kernel, but the whole network implements the Nadaraya-Watson estimator. The network memorizes how the feature vectors are located in the feature space. The proposed approach is similar to the transfer learning when domains of source and target data are similar, but tasks are different. Various numerical simulation experiments illustrate TNW-CATE and compare it with the well-known T-learner, S-learner and X-learner for several types of the control and treatment outcome functions. The code of proposed algorithms implementing TNW-CATE is available in https://github.com/Stasychbr/TNW-CATE.