论文标题

订单两种元素的中央器的国旗品种中的轨道封闭:a,b,d型的正态性和分辨率

Orbit closures in flag varieties for the centralizer of an order-two nilpotent element : normality and resolutions for types A, B, D

论文作者

Jacques, Simon

论文摘要

令G为经典A,B,D和E中的还原代数群,为其lie代数的元素,其Z中的Centeriser在G中进行伴随作用。我们假设e用二级阶的nilpotent矩阵识别,该矩阵保证了g的标志品种中的z孔数量是有限的。对于B型,d在特征二中,我们还假设E的图像完全各向同性。我们表明,这种轨道的任何封闭都是正常的。我们还证明Y是Cohen-Macaulay,只要基本场具有特征性的零,并且Cohen-Macaulays仍然是A型的任何特征。我们的工作概括了N. Perrin和E. Smirnov在弹簧纤维上的结果([PS12])。

Let G be a reductive algebraic group in classical types A, B, D and e be an element of its Lie algebra with Z its centraliser in G for the adjoint action. We suppose that e identifies with an nilpotent matrix of order two, which guarantees the number of Z-orbits in the flag variety of G is finite. For types B, D in characteristic two, we also suppose the image of e is totally isotropic. We show that any closure Y of such orbit is normal. We also prove that Y is Cohen-Macaulay with rational singularities provided that the base field is of characteristic zero, and that Cohen-Macaulayness remains in any characteristic for type A. We exhibit a birational, rational morphism onto Y involving Schubert varieties. Our work generalizes a result by N. Perrin and E. Smirnov on Springer fibers ([PS12]).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源