论文标题
ECDT:同时特征检测和跟踪的事件聚类 -
eCDT: Event Clustering for Simultaneous Feature Detection and Tracking-
论文作者
论文摘要
与其他标准摄像机相反,事件摄像机以完全不同的方式来解释世界。作为异步事件的集合。尽管事件摄像头的独特数据输出,但许多事件功能检测和跟踪算法通过绕道绕组来表现出重大进展,从而取得了绕行的基于框架的数据表示。本文质疑这样做的需要,并提出了一种新型的事件数据友好方法,该方法可以实现同时的特征检测和跟踪,称为基于事件聚类的检测和跟踪(ECDT)。我们的方法采用一种新颖的聚类方法,称为基于K-NN分类器的空间聚类和使用噪声(KCSCAN)的应用,以聚集相邻的极性事件来检索事件轨迹。在辅助头和尾部描述器匹配过程中,在不同的极性中重新构成的事件群体会不断地遵循该功能轨迹,从而使功能轨迹不断发展。由于我们在时空空间中的聚类方法,我们的方法可以自动求解功能检测和特征跟踪。此外,ECDT可以使用可调的时间窗口以任何频率提取功能轨道,这不会破坏原始事件数据的高时间分辨率。与最先进的方法相比,我们的方法可实现30%的特征跟踪年龄,同时也具有与其大约等于其的低误差。
Contrary to other standard cameras, event cameras interpret the world in an entirely different manner; as a collection of asynchronous events. Despite event camera's unique data output, many event feature detection and tracking algorithms have shown significant progress by making detours to frame-based data representations. This paper questions the need to do so and proposes a novel event data-friendly method that achieve simultaneous feature detection and tracking, called event Clustering-based Detection and Tracking (eCDT). Our method employs a novel clustering method, named as k-NN Classifier-based Spatial Clustering and Applications with Noise (KCSCAN), to cluster adjacent polarity events to retrieve event trajectories.With the aid of a Head and Tail Descriptor Matching process, event clusters that reappear in a different polarity are continually tracked, elongating the feature tracks. Thanks to our clustering approach in spatio-temporal space, our method automatically solves feature detection and feature tracking simultaneously. Also, eCDT can extract feature tracks at any frequency with an adjustable time window, which does not corrupt the high temporal resolution of the original event data. Our method achieves 30% better feature tracking ages compared with the state-of-the-art approach while also having a low error approximately equal to it.