论文标题

上下文不知道图像检索的知识蒸馏

Context Unaware Knowledge Distillation for Image Retrieval

论文作者

Reddy, Bytasandram Yaswanth, Dubey, Shiv Ram, Sanodiya, Rakesh Kumar, Karn, Ravi Ranjan Prasad

论文摘要

现有的与数据有关的哈希方法使用具有数百万个参数的大型骨干网络,并且计算复杂。现有的知识蒸馏方法使用深(教师)模型的逻辑和其他功能,并将其作为紧凑型(学生)模型的知识,这要求教师的网络在上下文上与上下文中的学生模型平行进行微调。在目标环境中培训老师需要更多的时间和计算资源。在本文中,我们提出了不知道知识蒸馏的上下文,该蒸馏使用教师模型的知识而无需在目标环境上进行微调。我们还提出了一种新的高效学生模型架构,以进行知识蒸馏。提出的方法遵循两步过程。第一步涉及在不知道的教师模型中没有意识到的知识蒸馏的帮助下进行培训。第二步涉及在图像检索的上下文上微调学生模型。为了显示提出方法的功效,我们比较了检索结果,第1期。参数和否。在不同检索框架下,学生模型的运营与教师模型的运作,包括Deep Cauchy Hashing(DCH)和中央相似性量化(CSQ)。实验结果证实,所提出的方法在检索结果与效率之间提供了有希望的权衡。本文中使用的代码通过\ url {https://github.com/satoru2001/cukdfir}公开发布。

Existing data-dependent hashing methods use large backbone networks with millions of parameters and are computationally complex. Existing knowledge distillation methods use logits and other features of the deep (teacher) model and as knowledge for the compact (student) model, which requires the teacher's network to be fine-tuned on the context in parallel with the student model on the context. Training teacher on the target context requires more time and computational resources. In this paper, we propose context unaware knowledge distillation that uses the knowledge of the teacher model without fine-tuning it on the target context. We also propose a new efficient student model architecture for knowledge distillation. The proposed approach follows a two-step process. The first step involves pre-training the student model with the help of context unaware knowledge distillation from the teacher model. The second step involves fine-tuning the student model on the context of image retrieval. In order to show the efficacy of the proposed approach, we compare the retrieval results, no. of parameters and no. of operations of the student models with the teacher models under different retrieval frameworks, including deep cauchy hashing (DCH) and central similarity quantization (CSQ). The experimental results confirm that the proposed approach provides a promising trade-off between the retrieval results and efficiency. The code used in this paper is released publicly at \url{https://github.com/satoru2001/CUKDFIR}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源