论文标题
短期顺序及其对BCC NBMOTAW多主体元素合金的影响
Short-range order and its impacts on the BCC NbMoTaW multi-principal element alloy by the machine-learning potential
论文作者
论文摘要
我们采用机器学习力场,该电场通过具有双光谱系数作为描述符的神经网络(NN)训练,以研究对BCC NBMOTAW合金加强机制的短程阶(SRO)影响。 NN间原子电位提供了具有密度功能理论准确性的可转移力场。这种新型的NN电势可用于阐明NBMOTAW多主体元件合金(MPEA)中弹性,振动模式,可塑性和强度的SRO效应。结果表明,构成局部有序的B2结构的Mo-Ta对之间的吸引力很强,该结构可以通过温度调整并通过NB含量改善。 SRO增加了弹性常数和高频声子模式,并引入了额外的脱位运动摩擦摩擦。这种方法可以快速进行构图筛选,为新MPEA的计算引导的材料设计铺平了道路,并通过处理优化为调整机械性能的途径开辟了道路。
We employ a machine-learning force field, trained by a neural network (NN) with bispectrum coefficients as descriptors, to investigate the short-range order (SRO) influences on the BCC NbMoTaW alloy strengthening mechanism. The NN interatomic potential provides a transferable force field with density functional theory accuracy. This novel NN potential is applied to elucidate the SRO effects on the elasticity, vibrational modes, plasticity, and strength in the NbMoTaW multi-principal element alloy (MPEA). The results show the strong attraction among Mo-Ta pairs forming the local ordered B2 structures, which could be tuned via temperature and improved by Nb content. SRO increases the elastic constants and high-frequency phonon modes as well as introduces extra lattice friction of dislocation motion. This approach enables a rapid compositional screening, paves the way for computation-guided materials design of new MPEAs with better performance, and opens avenues for tuning the mechanical properties by processing optimization.