论文标题
基于计算机视觉的桥梁损坏检测的分层语义分割框架
A hierarchical semantic segmentation framework for computer vision-based bridge damage detection
论文作者
论文摘要
使用远程摄像机和无人机(UAVS)基于计算机视觉的损害检测可实现高效且低成本的桥梁健康监控,从而降低了人工成本以及传感器安装和维护的需求。通过利用最近的语义图像分割方法,我们能够找到关键结构组件的区域,并使用图像作为唯一的输入来识别像素级别的损坏。但是,当发现少量损坏(例如裂纹和裸露的钢筋)和具有有限图像样本的薄物体时,现有方法的性能很差,尤其是当感兴趣的组件高度不平衡时。为此,本文介绍了语义分割框架,该框架强加了组件类别和损害类型之间的层次语义关系。例如,仅在桥柱上存在的某些混凝土裂纹,因此在检测此类损害时,非列区域将被掩盖。通过这种方式,损坏检测模型只能从可能受损区域的学习特征上进行学习,并避免其他无关区域的影响。我们还利用多尺度的扩展,可提供不同尺度的视图,可保留每个图像的上下文信息,而不会失去处理小对象的能力。此外,提出的框架采用了重要的样本,该样本反复采样了包含稀有组件(例如铁路卧铺和裸露的钢筋)的图像,以提供更多的数据样本,从而解决了数据不平衡的数据挑战。
Computer vision-based damage detection using remote cameras and unmanned aerial vehicles (UAVs) enables efficient and low-cost bridge health monitoring that reduces labor costs and the needs for sensor installation and maintenance. By leveraging recent semantic image segmentation approaches, we are able to find regions of critical structural components and recognize damage at the pixel level using images as the only input. However, existing methods perform poorly when detecting small damages (e.g., cracks and exposed rebars) and thin objects with limited image samples, especially when the components of interest are highly imbalanced. To this end, this paper introduces a semantic segmentation framework that imposes the hierarchical semantic relationship between component category and damage types. For example, certain concrete cracks only present on bridge columns and therefore the non-column region will be masked out when detecting such damages. In this way, the damage detection model could focus on learning features from possible damaged regions only and avoid the effects of other irrelevant regions. We also utilize multi-scale augmentation that provides views with different scales that preserves contextual information of each image without losing the ability of handling small and thin objects. Furthermore, the proposed framework employs important sampling that repeatedly samples images containing rare components (e.g., railway sleeper and exposed rebars) to provide more data samples, which addresses the imbalanced data challenge.