论文标题
无限产物振幅的特性:委内斯诺,维拉索罗和库恩
Properties of infinite product amplitudes: Veneziano, Virasoro, and Coon
论文作者
论文摘要
我们详细介绍了委内亚诺,Virasoro和Coon振幅的特性。这些树级的四点散射幅度可以写成无限的产品,具有无限的简单极点。我们对COON振幅的方法使用$ Q $ - 分析的数学理论。我们将COON振幅解释为所有$ Q \ geq 0 $的委内撒振幅的$ Q $ - 振幅,并在其低能膨胀中发现了一种新的先验结构。我们表明,Virasoro振幅没有类似的$ Q $构成。
We detail the properties of the Veneziano, Virasoro, and Coon amplitudes. These tree-level four-point scattering amplitudes may be written as infinite products with an infinite sequence of simple poles. Our approach for the Coon amplitude uses the mathematical theory of $q$-analysis. We interpret the Coon amplitude as a $q$-deformation of the Veneziano amplitude for all $q \geq 0$ and discover a new transcendental structure in its low-energy expansion. We show that there is no analogous $q$-deformation of the Virasoro amplitude.