论文标题

von Neumann熵和其他准经典应用的近距离连续性绑定

Close-to-optimal continuity bound for the von Neumann entropy and other quasi-classical applications of the Alicki-Fannes-Winter technique

论文作者

Shirokov, M. E.

论文摘要

我们考虑了广泛用于定量连续性分析量子系统和通道特征的准经典技术的准经典版本。此版本使我们能够在属于特殊形式子集的量子集的不同类型的约束下获得连续性界限,该状态被称为“准经典”。 描述了该方法的几种应用。除其他外,我们在能量类型的约束下获得了von Neumann熵的通用连续性,在一个模式的量子振荡器中,该连续性接近贝克尔,达塔和贾布尔最近提出的专业最佳连续性。 我们获得了量子古典状态的量子条件熵的半偏界,以及在双方量子系统中具有仅在一个状态上施加的等级/能量约束的两部分量子系统中形成的纠缠。还获得了多模式量子振荡器的经典随机变量和经典状态的熵特征的半频率边界。

We consider a quasi-classical version of the Alicki-Fannes-Winter technique widely used for quantitative continuity analysis of characteristics of quantum systems and channels. This version allows us to obtain continuity bounds under constraints of different types for quantum states belonging to subsets of a special form that can be called "quasi-classical". Several applications of the proposed method are described. Among others, we obtain the universal continuity bound for the von Neumann entropy under the energy-type constraint which in the case of one-mode quantum oscillator is close to the specialized optimal continuity bound presented recently by Becker, Datta and Jabbour. We obtain semi-continuity bounds for the quantum conditional entropy of quantum-classical states and for the entanglement of formation in bipartite quantum systems with the rank/energy constraint imposed only on one state. Semi-continuity bounds for entropic characteristics of classical random variables and classical states of a multi-mode quantum oscillator are also obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源