论文标题
利用各向异性颗粒形状,以高产量和纯度组装胶体分子
Exploiting anisotropic particle shape to electrostatically assemble colloidal molecules with high yield and purity
论文作者
论文摘要
假设:具有各向异性形状和相互作用的胶体分子是破译真实分子和建筑单元的行为的强大模型系统,用于创建具有设计特性的材料。尽管已经制定了许多组装策略,但它们通常会产生广泛的分布或仅限于特定类型。我们假设可以利用胶体颗粒的形状和相对大小,以有效地将其组装到所需价的胶体分子中。 实验:我们利用了由聚苯乙烯或二氧化硅制成的负电荷球的静电自组装上,上呈正电荷的赤铁矿立方体。我们彻底分析了颗粒的形状和大小比在胶体分子的簇大小和产率上的作用。 发现:使用实验和模拟的组合,我们证明了立方颗粒形状对于在各种大小比率上产生不同胶体分子的高产量至关重要。我们发现,卫星球之间的静电排斥对于利用立方体的模板效应很重要,导致球体优先集中在方面,而不是立方体的边缘和角落。此外,我们揭示了我们的方案不受胶体颗粒材料的特定选择的影响。最后,我们表明赤铁矿立方体的永久性磁偶极力矩可用于将胶体分子与非组装卫星颗粒分开。我们的简单有效策略可能会扩展到其他模板形状,从而大大扩展了可以以高产量和纯度来实现的胶体分子库。
Hypothesis: Colloidal molecules with anisotropic shapes and interactions are powerful model systems for deciphering the behavior of real molecules and building units for creating materials with designed properties. While many strategies for their assembly have been developed, they typically yield a broad distribution or are limited to a specific type. We hypothesize that the shape and relative sizes of colloidal particles can be exploited to efficiently direct their assembly into colloidal molecules of desired valence. Experiments: We exploit electrostatic self-assembly of negatively charged spheres made from either polystyrene or silica onto positively charged hematite cubes. We thoroughly analyze the role of the shape and size ratio of particles on the cluster size and yield of colloidal molecules. Findings: Using a combination of experiments and simulations, we demonstrate that cubic particle shape is crucial to generate high yields of distinct colloidal molecules over a wide variety of size ratios. We find that electrostatic repulsion between the satellite spheres is important to leverage the templating effect of the cubes, leading the spheres to preferentially assemble on the facets rather than the edges and corners of the cube. Furthermore, we reveal that our protocol is not affected by the specific choice of the material of the colloidal particles. Finally, we show that the permanent magnetic dipole moment of the hematite cubes can be utilized to separate colloidal molecules from non-assembled satellite particles. Our simple and effective strategy might be extended to other templating particle shapes, thereby greatly expanding the library of colloidal molecules that can be achieved with high yield and purity.