论文标题
嵌入柔性品种的定理
Embedding theorem for flexible varieties
论文作者
论文摘要
令$ z $为仿射代数品种,$ x $是一种平稳的灵活品种。我们制定了一些标准,其中$ z $承认将封闭式嵌入到$ x $中。特别是,我们表明,如果$ x $是特殊线性组的同构(作为代数品种)和$ \ dim x \ geq \ max(2 \ dim z+1,\ dim tz)$,则$ z $承认封闭的嵌入$ x $。
Let $Z$ be an affine algebraic variety and $X$ be a smooth flexible variety. We develop some criteria under which $Z$ admits a closed embedding into $X$. In particular, we show that if $X$ is isomorphic (as an algebraic variety) to a special linear group and $\dim X \geq \max(2\dim Z+1, \dim TZ)$, then $Z$ admits a closed embedding into $X$.