论文标题

关于与多项式递归相关的生长常数的超越性

On the transcendence of growth constants associated with polynomial recursions

论文作者

Kumar, Veekesh

论文摘要

令$ p(x):= = a_d x^d+\ cdots+a_0 \ in \ mathbb {q} [x] $,$ a_d> 0 $,成为度量$ d \ geq 2 $的多项式。令$(x_n)$为满足\ begin {qore*} x_ {n+1} = p(x_n)\ mbox {for all} \ quad n = 0,1,1,2 \ ldots,\ quad Quad \ mbox {和quad x_n \ quad as quad a as quad a as quad a as quad, n \ to \ infty。 \ end {equation*} 设置$α:= \ lim_ {n \ to \ infty} x^{d^{ - n}} _ n $。然后,在假设$ a_d^{1/(d-1)} \ in \ mathbb {q} $中,在dubickas \ cite \ cite {dubickas}的最新结果中,要么$α$是跨性别的,要么$α$可以是整数,或者是二式Pisot pisot单位,或者是$ late $ late $ late $ lationcat $ \ mathbb {q} $。 In this paper, we study the nature of such $α$ without the assumption that $a_d^{1/(d-1)}$ is in $\mathbb{Q}$, and we prove that either the number $α$ is transcendental, or $α^h$ is a Pisot number with $h$ being the order of the torsion subgroup of the Galois closure of the number field $ \ mathbb {q}(α,a_d^{ - \ frac {1} {d-1}}})$。本文提出的其他结果研究了不等式的解决方案$ ||q_1α_1^n+\ cdots+q_kα_k^n+β|| <θ^n $ in $(n,q_1,q_1,\ ldots,q_k)在这里,$ k $代表一个数字字段,$θ\ in(0,1)$。符号$ || x || $表示$ x $及其最近的整数之间的距离,$ \ mathbb {z} $。

Let $P(x):=a_d x^d+\cdots+a_0\in\mathbb{Q}[x]$, $a_d>0$, be a polynomial of degree $d\geq 2$. Let $(x_n)$ be a sequence of integers satisfying \begin{equation*} x_{n+1}=P(x_n)\mbox{for all}\quad n=0,1,2\ldots,\quad\mbox{and} \quad x_n\to\infty\quad\mbox{as}\quad n\to\infty. \end{equation*} Set $α:=\lim_{n\to\infty} x^{d^{-n}}_n$. Then, under the assumption $a_d^{1/(d-1)}\in\mathbb{Q}$, in a recent result by Dubickas \cite{dubickas}, either $α$ is transcendental, or $α$ can be an integer, or a quadratic Pisot unit with $α^{-1}$ being its conjugate over $\mathbb{Q}$. In this paper, we study the nature of such $α$ without the assumption that $a_d^{1/(d-1)}$ is in $\mathbb{Q}$, and we prove that either the number $α$ is transcendental, or $α^h$ is a Pisot number with $h$ being the order of the torsion subgroup of the Galois closure of the number field $\mathbb{Q}(α, a_d^{-\frac{1}{d-1}})$. Other results presented in this paper investigate the solutions of the inequality $||q_1 α_1^n+\cdots+q_k α_k^n +β||<θ^n$ in $(n,q_1,\ldots,q_k)\in \mathbb{N}\times(K^\times)^k$, considering whether $β$ is rational or irrational. Here, $K$ represents a number field, and $θ\in (0,1)$. The notation $||x||$ denotes the distance between $x$ and its nearest integer in $\mathbb{Z}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源