论文标题

无监督视频对象分割的分层功能对齐网络

Hierarchical Feature Alignment Network for Unsupervised Video Object Segmentation

论文作者

Pei, Gensheng, Shen, Fumin, Yao, Yazhou, Xie, Guo-Sen, Tang, Zhenmin, Tang, Jinhui

论文摘要

光流是一种易于构思和珍贵的提示,用于推进无监督的视频对象细分(UVOS)。以前的大多数方法直接提取并融合了在UVOS设置中分割目标对象的运动和外观特征。但是,光流本质上是连续帧之间所有像素的瞬时速度,因此使运动特征与相应帧之间的主要对象不太对齐。为了解决上述挑战,我们为外观和运动特征对齐方式提出了一个简洁,实用和有效的体系结构,称为层次特征对齐网络(HFAN)。具体而言,HFAN中的关键优点是顺序特征对齐(FAM)模块和特征适应(FAT)模块,这些模块被利用用于处理外观和运动特征。 FAM能够分别将外观和运动特征与主要对象语义表示。此外,脂肪是针对外观和运动特征的自适应融合而明确设计的,以实现跨模式特征之间的理想权衡。广泛的实验证明了拟议的HFAN的有效性,该实验在Davis-16上达到了新的最新性能,达到88.7 $ \ MATHCAL {J} \&\ MATHCAL {f} $的意思是,即相对提高3.5%,比最佳出版的结果相对改善。

Optical flow is an easily conceived and precious cue for advancing unsupervised video object segmentation (UVOS). Most of the previous methods directly extract and fuse the motion and appearance features for segmenting target objects in the UVOS setting. However, optical flow is intrinsically an instantaneous velocity of all pixels among consecutive frames, thus making the motion features not aligned well with the primary objects among the corresponding frames. To solve the above challenge, we propose a concise, practical, and efficient architecture for appearance and motion feature alignment, dubbed hierarchical feature alignment network (HFAN). Specifically, the key merits in HFAN are the sequential Feature AlignMent (FAM) module and the Feature AdaptaTion (FAT) module, which are leveraged for processing the appearance and motion features hierarchically. FAM is capable of aligning both appearance and motion features with the primary object semantic representations, respectively. Further, FAT is explicitly designed for the adaptive fusion of appearance and motion features to achieve a desirable trade-off between cross-modal features. Extensive experiments demonstrate the effectiveness of the proposed HFAN, which reaches a new state-of-the-art performance on DAVIS-16, achieving 88.7 $\mathcal{J}\&\mathcal{F}$ Mean, i.e., a relative improvement of 3.5% over the best published result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源