论文标题
超相关方法的选定配置交互的扩展
Extension of selected configuration interaction for transcorrelated methods
论文作者
论文摘要
在这项工作中,我们将流行的选定配置交互(SCI)算法扩展到超相关(TC)框架。尽管我们在这项工作中使用了最近引入的单参数相关因素[E. Giner,J。Chem。 Phys。,154,084119(2021)],此处提出的理论对于任何相关因素都是有效的。得益于非冬宫TC特征值问题的形式化,以搜索特定功能的固定点,具体取决于左右功能,我们获得了一个通用框架,为SCI中的选择标准和二阶二阶扰动校正提供了不同的选择。在对越来越大的基础集中对不同二线原子和分子系统进行了数值研究之后,我们发现在选择标准中,在选择标准中,必须考虑到TC Hamiltonian的非遗传性特征,才能获得TC能量的快速收敛。同样,基于一阶系数或二阶能量能量的选择标准会导致明显不同的收敛速率,这通常在通常的Hermitian SCI中不是这种情况。关于总二阶扰动能的收敛性,我们发现方程中使用的左功能的质量强烈影响结果的质量。在此处提出的近乎最佳算法中,我们发现TC框架中的SCI扩展在基集和Slater决定因素的数量方面比通常的SCI收敛速度更快。
In this work we present an extension of the popular selected configuration interaction (SCI) algorithms to the Transcorrelated (TC) framework. Although we used in this work the recently introduced one-parameter correlation factor [E. Giner, J. Chem. Phys., 154, 084119 (2021)], the theory presented here is valid for any correlation factor. Thanks to the formalization of the non Hermitian TC eigenvalue problem as a search of stationary points for a specific functional depending both on left-and right-functions, we obtain a general framework allowing different choices for both the selection criterion in SCI and the second order perturbative correction to the energy. After numerical investigations on different second-row atomic and molecular systems in increasingly large basis sets, we found that taking into account the non Hermitian character of the TC Hamiltonian in the selection criterion is mandatory to obtain a fast convergence of the TC energy. Also, selection criteria based on either the first order coefficient or the second order energy lead to significantly different convergence rates, which is typically not the case in the usual Hermitian SCI. Regarding the convergence of the total second order perturbation energy, we find that the quality of the left-function used in the equations strongly affects the quality of the results. Within the near-optimal algorithm proposed here we find that the SCI expansion in the TC framework converges faster than the usual SCI both in terms of basis set and number of Slater determinants.