论文标题
双曲线表面上非简单闭合大地测量学的最小长度
Minimal length of nonsimple closed geodesics on hyperbolic surfaces
论文作者
论文摘要
在本文中,我们表明,有限型双曲线表面上的封闭地球学的长度最小,而自我交流号$ k $的订单$ 2 \ log k $ a $ k $ a $ a $ k $变得很大。
In the present paper, we show that the minimal length of closed geodesics on finite-type hyperbolic surfaces with self-intersection number $k$ has order $2\log k$ as $k$ gets large.