论文标题

使用本地监督的学习

Gigapixel Whole-Slide Images Classification using Locally Supervised Learning

论文作者

Zhang, Jingwei, Zhang, Xin, Ma, Ke, Gupta, Rajarsi, Saltz, Joel, Vakalopoulou, Maria, Samaras, Dimitris

论文摘要

组织病理学全幻灯片图像(WSIS)在临床研究中起着非常重要的作用,并作为许多癌症诊断的黄金标准。但是,由于其巨大尺寸,生成用于处理WSIS的自动工具是具有挑战性的。当前,为了解决这个问题,传统方法依赖于多个实例学习(MIL)策略来处理贴剂级别的WSI。尽管有效,但这种方法在计算上很昂贵,因为将WSI铺成斑块需要花费时间,并且不探索这些瓷砖之间的空间关系。为了应对这些限制,我们提出了一个本地监督的学习框架,该框架通过探索包含的整个本地和全球信息来处理整个幻灯片。该框架将预训练的网络划分为几个模块,并使用辅助模型在本地优化每个模块。我们还引入了一个随机特征重建单元(RFR),以在训练过程中保留区分特征,并将方法的性能提高1%至3%。对三个公开可用的WSI数据集进行了广泛的实验:TCGA-NSCLC,TCGA-RCC和LKS,突出了我们方法在不同分类任务上的优越性。我们的方法的准确性优于最先进的MIL方法,而速度的速度为7至10倍。此外,将其分为八个模块时,我们的方法需要端到端培训所需的GPU总内存总数的20%。我们的代码可在https://github.com/cvlab-stonybrook/local_learning_wsi上找到。

Histopathology whole slide images (WSIs) play a very important role in clinical studies and serve as the gold standard for many cancer diagnoses. However, generating automatic tools for processing WSIs is challenging due to their enormous sizes. Currently, to deal with this issue, conventional methods rely on a multiple instance learning (MIL) strategy to process a WSI at patch level. Although effective, such methods are computationally expensive, because tiling a WSI into patches takes time and does not explore the spatial relations between these tiles. To tackle these limitations, we propose a locally supervised learning framework which processes the entire slide by exploring the entire local and global information that it contains. This framework divides a pre-trained network into several modules and optimizes each module locally using an auxiliary model. We also introduce a random feature reconstruction unit (RFR) to preserve distinguishing features during training and improve the performance of our method by 1% to 3%. Extensive experiments on three publicly available WSI datasets: TCGA-NSCLC, TCGA-RCC and LKS, highlight the superiority of our method on different classification tasks. Our method outperforms the state-of-the-art MIL methods by 2% to 5% in accuracy, while being 7 to 10 times faster. Additionally, when dividing it into eight modules, our method requires as little as 20% of the total gpu memory required by end-to-end training. Our code is available at https://github.com/cvlab-stonybrook/local_learning_wsi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源