论文标题

联合学习的快速复合优化和统计恢复

Fast Composite Optimization and Statistical Recovery in Federated Learning

论文作者

Bao, Yajie, Crawshaw, Michael, Luo, Shan, Liu, Mingrui

论文摘要

作为一个普遍的分布式学习范式,联邦学习(FL)训练了一个全球模型,以不经常进行通信的大量设备进行训练。本文研究了FL设置中的一类复合优化和统计恢复问题,其损失函数由数据依赖的平滑损耗和非平滑正规剂组成。示例包括使用套索的稀疏线性回归,使用核标准正则化等等的低率矩阵恢复等。在现有文献中,联邦复合优化算法仅是从优化的角度设计的,而无需任何统计保证。此外,他们不考虑在统计恢复问题中常用(受限)强凸度。从优化和统计角度来看,我们都会推进此问题的前沿。从优化的前期,我们提出了一种名为\ textit {快速联合双平均}的新算法,用于强烈凸出和平滑损失,并在复合设置中建立最新的迭代和通信复杂性。特别是,我们证明它具有快速的速度,线性加速和减少的沟通回合。从统计前期开始,对于受限制的强烈凸出和平滑损失,我们设计了另一种算法,即\ textIt {多阶段联合双重平均},并证明了与线性速度相结合的高概率复杂性,可达到最佳统计精度。合成数据和实际数据的实验表明,我们的方法的性能要比其他基线更好。据我们所知,这是为FL中复合问题提供快速优化算法和统计恢复保证的第一项工作。

As a prevalent distributed learning paradigm, Federated Learning (FL) trains a global model on a massive amount of devices with infrequent communication. This paper investigates a class of composite optimization and statistical recovery problems in the FL setting, whose loss function consists of a data-dependent smooth loss and a non-smooth regularizer. Examples include sparse linear regression using Lasso, low-rank matrix recovery using nuclear norm regularization, etc. In the existing literature, federated composite optimization algorithms are designed only from an optimization perspective without any statistical guarantees. In addition, they do not consider commonly used (restricted) strong convexity in statistical recovery problems. We advance the frontiers of this problem from both optimization and statistical perspectives. From optimization upfront, we propose a new algorithm named \textit{Fast Federated Dual Averaging} for strongly convex and smooth loss and establish state-of-the-art iteration and communication complexity in the composite setting. In particular, we prove that it enjoys a fast rate, linear speedup, and reduced communication rounds. From statistical upfront, for restricted strongly convex and smooth loss, we design another algorithm, namely \textit{Multi-stage Federated Dual Averaging}, and prove a high probability complexity bound with linear speedup up to optimal statistical precision. Experiments in both synthetic and real data demonstrate that our methods perform better than other baselines. To the best of our knowledge, this is the first work providing fast optimization algorithms and statistical recovery guarantees for composite problems in FL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源