论文标题
银河中心区域伽马射线特征的3D建模的含义
Implications from 3D modeling of gamma-ray signatures in the Galactic Center Region
论文作者
论文摘要
语境。在过去的几十年中,已经在伽马射线中研究了银河系中心(GC)区域 - 费米检测到的GC多余的区域仍未完全了解,并且H.E.S.S.首次检测到PEVATRON。指示存在可以加速宇宙射线至PEV或更高的来源。 目标。在本文中,我们正在研究H.E.S.S.检测到的Pevatron排放的起源。通过第一次在现实的三维气体和光子场分布和大规模磁场中模拟GC中的宇宙射线。 方法。我们使用传播软件CRPROPA 3.1中实现的随机微分方程的方法使用各向异性扩散张量求解3D传输方程(Merten等人,2017年)。我们测试了五个不同的源分布,用于扩散张量的四种不同配置,即垂直与并行组件的比率$ε= 0.001,\ 0.01,\ 0.1,\ 0.1,\ 0.3 $。 结果。我们发现,H.E.S.S.测量的伽马射线的二维分布最适合考虑三个宇宙射线源的模型,即中央源,SNR G0.9+0.1和源Hess J1746-285。拟合表明传播是由$ \ espilon = 0.001 $的平行扩散所支配的。 结论。我们发现,从Guenduez等人获得的3D气体和B场构型中的3D传播。 (2020)可以很好地解释数据的一般特征。我们预测,CTA应该能够鉴定SGRB2的发射和我们模拟中包含的六个Dust Ridge云的发射,并且应以CTA的预期分辨率为0.033 $^\ circ $。
Context. The Galactic Center (GC) region has been studied in gamma rays in the past decades - the GC excess detected by Fermi is still not fully understood and the first detection of a PeVatron by H.E.S.S. indicates the existence of sources that can accelerate cosmic rays up to a PeV or higher. Aims. In this paper, we are investigating the origin of the PeVatron emission detected by H.E.S.S. by, for the first time, simulating cosmic rays in the GC in a realistic three-dimensional gas and photon field distribution and large-scale magnetic field. Methods. We solve the 3D transport equation with an anisotropic diffusion tensor using the approach of stochastic differential equations as implemented in the propagation software CRPropa 3.1 (Merten et al. 2017). We test five different source distributions for four different configurations of the diffusion tensor, i.e. with ratios of the perpendicular to parallel components $ε= 0.001,\ 0.01,\ 0.1,\ 0.3$. Results. We find that the two-dimensional distribution of gamma rays as measured by H.E.S.S. is best fit by a model that considers three cosmic-ray sources, i.e. a central source, the SNR G0.9+0.1 and the source HESS J1746-285. The fit indicates that propagation is dominated by parallel diffusion with $ \espilon = 0.001 $. Conclusions. We find that the 3D propagation in the 3D gas and B-field configurations taken from Guenduez et al. (2020) can explain the general features of the data well. We predict that CTA should be able to identify emission from SgrB2 and the six dust ridge clouds that are included in our simulations and that should be detectable with a the expected resolution of CTA of 0.033$^\circ$.