论文标题

从颞空间立体主义学习以基于跨数据库骨架的动作识别

Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based Action Recognition

论文作者

Tang, Yansong, Liu, Xingyu, Yu, Xumin, Zhang, Danyang, Lu, Jiwen, Zhou, Jie

论文摘要

最近,基于骨架的动作识别已经取得了快速进步和卓越的性能。在本文中,我们在跨数据集设置下调查了这个问题,这是一个新的,务实且具有挑战性的任务。遵循无监督的域改编(UDA)范式,该动作标签仅在源数据集上可用,但在训练阶段的目标数据集中不可用。与UDA的基于对抗性学习的传统方法不同,我们利用一个自学计划来减少两个基于骨架的动作数据集之间的域移动。我们的灵感来自20世纪初期的艺术类型的立体主义,它破坏并重新组装了对象,以传达更大的背景。通过对时间段或人体部位进行分割和定单,我们设计了两个自制的学习分类任务,以探索基于骨架的动作的时间和空间依赖性,并提高模型的概括能力。我们在六个数据集上进行基于骨架的动作识别的实验,包括三个大规模数据集(NTU RGB+D,PKU-MMD和动力学),在其中建立了新的跨数据库设置和基准。广泛的结果表明,我们的方法优于最先进的方法。我们的模型和所有比较方法的源代码均可在https://github.com/shanice-l/st-cubism上获得。

Rapid progress and superior performance have been achieved for skeleton-based action recognition recently. In this article, we investigate this problem under a cross-dataset setting, which is a new, pragmatic, and challenging task in real-world scenarios. Following the unsupervised domain adaptation (UDA) paradigm, the action labels are only available on a source dataset, but unavailable on a target dataset in the training stage. Different from the conventional adversarial learning-based approaches for UDA, we utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets. Our inspiration is drawn from Cubism, an art genre from the early 20th century, which breaks and reassembles the objects to convey a greater context. By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks to explore the temporal and spatial dependency of a skeleton-based action and improve the generalization ability of the model. We conduct experiments on six datasets for skeleton-based action recognition, including three large-scale datasets (NTU RGB+D, PKU-MMD, and Kinetics) where new cross-dataset settings and benchmarks are established. Extensive results demonstrate that our method outperforms state-of-the-art approaches. The source codes of our model and all the compared methods are available at https://github.com/shanice-l/st-cubism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源