论文标题

Ehrhart多项式的特性,其根部位于临界线上

Properties of Ehrhart Polynomials whose Roots Lie on the Critical Line

论文作者

Kölbl, Max

论文摘要

我们研究了一类多项式,该多项式在临界线上具有所有根源,并与Ehrhart多项式具有许多属性。布劳恩(Braun)表明,ehrhart多项式的根部是二次界定的,而higashitani为多面体提供了示例,其ehrhart多项式根部接近这种结合。如果多面体在临界线上具有根源,我们提出了改进的结合。作为副作用,这证实了布劳恩的猜想的特殊情况。

We study a class of polynomials that has all of its roots on the critical line and shares many properties with Ehrhart polynomials. Braun showed that the roots of Ehrhart polynomials are bounded quadratically and Higashitani provided examples for polytopes whose Ehrhart polynomial roots come close to this bound. In the case of polytopes which have their roots on the critical line, we present an improved bound. As a side effect this confirms a special case of a conjecture of Braun.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源