论文标题

通过双重回归学习迈向轻质超分辨率

Towards Lightweight Super-Resolution with Dual Regression Learning

论文作者

Guo, Yong, Tan, Mingkui, Deng, Zeshuai, Wang, Jingdong, Chen, Qi, Cao, Jiezhang, Xu, Yanwu, Chen, Jian

论文摘要

深层神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的映射,在图像超分辨率(SR)任务中表现出了不起的性能。但是,SR问题通常是一个问题不足的问题,现有方法将受到一些局限性。首先,SR的可能映射空间可能非常大,因为可能存在许多不同的HR图像,这些图像可以从相同的LR图像中超级分辨。结果,很难直接从如此庞大的空间中学习有希望的SR映射。其次,通常不可避免地要开发具有极高计算成本的非常大型模型来产生有希望的SR性能。实际上,可以使用模型压缩技术通过降低模型冗余来获得紧凑的模型。然而,由于非常大的SR映射空间,现有模型压缩方法很难准确识别冗余组件。为了减轻第一个挑战,我们提出了一个双重回归学习计划,以减少可能的SR映射空间。具体而言,除了从LR到HR图像的映射外,我们还学习了一个附加的双回归映射,以估算下采样内核和重建LR图像。通过这种方式,双映射是减少可能映射空间的约束。为了应对第二项挑战,我们提出了一种双回归压缩方法(DRC)方法,以基于通道修剪来降低图层级别和通道级别的模型冗余。具体而言,我们首先开发了一种通道编号搜索方法,该方法将双重回归损耗最小化以确定每一层的冗余。鉴于搜索的通道编号,我们进一步利用了双回归方式来评估通道的重要性并修剪冗余。广泛的实验显示了我们方法在获得准确有效的SR模型方面的有效性。

Deep neural networks have exhibited remarkable performance in image super-resolution (SR) tasks by learning a mapping from low-resolution (LR) images to high-resolution (HR) images. However, the SR problem is typically an ill-posed problem and existing methods would come with several limitations. First, the possible mapping space of SR can be extremely large since there may exist many different HR images that can be super-resolved from the same LR image. As a result, it is hard to directly learn a promising SR mapping from such a large space. Second, it is often inevitable to develop very large models with extremely high computational cost to yield promising SR performance. In practice, one can use model compression techniques to obtain compact models by reducing model redundancy. Nevertheless, it is hard for existing model compression methods to accurately identify the redundant components due to the extremely large SR mapping space. To alleviate the first challenge, we propose a dual regression learning scheme to reduce the space of possible SR mappings. Specifically, in addition to the mapping from LR to HR images, we learn an additional dual regression mapping to estimate the downsampling kernel and reconstruct LR images. In this way, the dual mapping acts as a constraint to reduce the space of possible mappings. To address the second challenge, we propose a dual regression compression (DRC) method to reduce model redundancy in both layer-level and channel-level based on channel pruning. Specifically, we first develop a channel number search method that minimizes the dual regression loss to determine the redundancy of each layer. Given the searched channel numbers, we further exploit the dual regression manner to evaluate the importance of channels and prune the redundant ones. Extensive experiments show the effectiveness of our method in obtaining accurate and efficient SR models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源