论文标题

用于多标签眼科疾病检测的歧视性内核卷积网络在不平衡的眼底图像数据集上

Discriminative Kernel Convolution Network for Multi-Label Ophthalmic Disease Detection on Imbalanced Fundus Image Dataset

论文作者

Bhati, Amit, Gour, Neha, Khanna, Pritee, Ojha, Aparajita

论文摘要

通过研究视网膜生物结构的进展,可以识别眼病的存在和严重性是可行的。眼底检查是检查眼睛的生物结构和异常的诊断程序。诸如青光眼,糖尿病性视网膜病和白内障等眼科疾病是世界各地视觉障碍的主要原因。眼疾病智能识别(ODIR-5K)是研究人员用于多标签的多份多症状分类的基准结构的基底图像数据集。这项工作提出了一个歧视性内核卷积网络(DKCNET),该网络探讨了歧视区域的特征,而无需增加额外的计算成本。 DKCNET由注意力块组成,然后是挤压和激发(SE)块。注意力块从骨干网络中获取功能,并生成歧视性特征注意图。 SE块采用区分特征图并改善了通道相互依赖性。使用InceptionResnet骨干网络观察到DKCNET的表现更好,用于具有96.08 AUC,94.28 F1-SCORE和0.81 KAPPA得分的ODIR-5K底面图像的多标签分类。所提出的方法根据诊断关键字将通用目标标签分配给眼对。基于这些标签,进行了过采样和不足采样以解决阶级失衡。为了检查拟议模型对培训数据的偏见,在三个公开可用的基准数据集上测试了在ODIR数据集上训练的模型。发现它在完全看不见的底面图像上也具有良好的性能。

It is feasible to recognize the presence and seriousness of eye disease by investigating the progressions in retinal biological structure. Fundus examination is a diagnostic procedure to examine the biological structure and anomaly of the eye. Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataract are the main reason for visual impairment around the world. Ocular Disease Intelligent Recognition (ODIR-5K) is a benchmark structured fundus image dataset utilized by researchers for multi-label multi-disease classification of fundus images. This work presents a discriminative kernel convolution network (DKCNet), which explores discriminative region-wise features without adding extra computational cost. DKCNet is composed of an attention block followed by a squeeze and excitation (SE) block. The attention block takes features from the backbone network and generates discriminative feature attention maps. The SE block takes the discriminative feature maps and improves channel interdependencies. Better performance of DKCNet is observed with InceptionResnet backbone network for multi-label classification of ODIR-5K fundus images with 96.08 AUC, 94.28 F1-score and 0.81 kappa score. The proposed method splits the common target label for an eye pair based on the diagnostic keyword. Based on these labels oversampling and undersampling is done to resolve class imbalance. To check the biasness of proposed model towards training data, the model trained on ODIR dataset is tested on three publicly available benchmark datasets. It is found to give good performance on completely unseen fundus images also.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源