论文标题

基于无监督合奏的深度学习方法,用于IoT网络中的攻击检测

Unsupervised Ensemble Based Deep Learning Approach for Attack Detection in IoT Network

论文作者

Ahmed, Mir Shahnawaz, Shah, Shahid Mehraj

论文摘要

物联网(物联网)通过通过互联网控制设备/事物来改变生活。物联网已为日常问题指定了许多智能解决方案,将网络物理系统(CPS)和其他经典领域转化为智能区域。构成物联网的大多数边缘设备具有极低的处理能力。为了降低物联网网络,攻击者可以利用这些设备进行各种网络攻击。此外,随着越来越多的物联网设备的添加,新的和未知威胁的潜力呈指数增长。因此,必须开发一个可以识别此类威胁的物联网网络的智能安全框架。在本文中,我们开发了一种无监督的集合学习模型,该模型能够从未标记的数据集中检测物联网中的新攻击或未知攻击。系统生成的标记数据集用于训练深度学习模型以检测IoT网络攻击。此外,研究提出了一种特征选择机制,用于识别数据集中最相关的方面以检测攻击。该研究表明,建议的模型能够识别未标记的IoT网络数据集和DBN(深信网络)的表现优于其他模型,检测精度为97.5%,而使用建议方法提供的标记数据集进行了培训时,检测准确性为97.5%,错误警报率为2.3%。

The Internet of Things (IoT) has altered living by controlling devices/things over the Internet. IoT has specified many smart solutions for daily problems, transforming cyber-physical systems (CPS) and other classical fields into smart regions. Most of the edge devices that make up the Internet of Things have very minimal processing power. To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks. In addition, as more and more IoT devices are added, the potential for new and unknown threats grows exponentially. For this reason, an intelligent security framework for IoT networks must be developed that can identify such threats. In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset. The system-generated labelled dataset is used to train a deep learning model to detect IoT network attacks. Additionally, the research presents a feature selection mechanism for identifying the most relevant aspects in the dataset for detecting attacks. The study shows that the suggested model is able to identify the unlabelled IoT network datasets and DBN (Deep Belief Network) outperform the other models with a detection accuracy of 97.5% and a false alarm rate of 2.3% when trained using labelled dataset supplied by the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源