论文标题
通过学习紧凑和对齐表示形式的跨域跨集跨域学习
Cross-Domain Cross-Set Few-Shot Learning via Learning Compact and Aligned Representations
论文作者
论文摘要
很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL)(CDSC-FSL),不仅需要很少的学习者,不仅需要适应新的领域,而且还需要在每个小说类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,5击精度平均提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
Few-shot learning (FSL) aims to recognize novel queries with only a few support samples through leveraging prior knowledge from a base dataset. In this paper, we consider the domain shift problem in FSL and aim to address the domain gap between the support set and the query set. Different from previous cross-domain FSL work (CD-FSL) that considers the domain shift between base and novel classes, the new problem, termed cross-domain cross-set FSL (CDSC-FSL), requires few-shot learners not only to adapt to the new domain, but also to be consistent between different domains within each novel class. To this end, we propose a novel approach, namely stabPA, to learn prototypical compact and cross-domain aligned representations, so that the domain shift and few-shot learning can be addressed simultaneously. We evaluate our approach on two new CDCS-FSL benchmarks built from the DomainNet and Office-Home datasets respectively. Remarkably, our approach outperforms multiple elaborated baselines by a large margin, e.g., improving 5-shot accuracy by 6.0 points on average on DomainNet. Code is available at https://github.com/WentaoChen0813/CDCS-FSL