论文标题

ESFPNET:自动荧光支气管镜视频中实时病变细分的有效深度学习体系结构

ESFPNet: efficient deep learning architecture for real-time lesion segmentation in autofluorescence bronchoscopic video

论文作者

Chang, Qi, Ahmad, Danish, Toth, Jennifer, Bascom, Rebecca, Higgins, William E.

论文摘要

肺癌倾向于在晚期阶段检测到,导致患者死亡率较高。因此,最近的许多研究集中在早期疾病检测上是支气管镜检查的方法是一种有效的无创方法检测肺癌早期表现(支气管病变)的方法。特别是,自动荧光支气管镜检查(AFB)区分了具有不同颜色的正常(绿色)和患病组织(绿色)和患病组织(绿色)的自荧光性能。由于最近的研究表明AFB在搜索病变中的敏感性很高,因此它已成为支气管镜呼吸道考试中的潜在关键方法。不幸的是,对AFB视频的手动检查非常乏味且容易出错,而有限的努力已用于可能更强大的自动AFB病变分析。我们提出了一个被称为ESFPNET的深度学习架构的实时(处理27帧/秒的处理吞吐量),以精确的分割和对AFB视频流中支气管病变的稳健检测。该体系结构具有编码器结构,该结构可利用预处理的混合变压器(MIT)编码器和有效的阶段特征金字塔(ESFP)解码器结构。分割来自20名肺癌患者的AFB气道检查视频,这表明我们的方法给出了平均骰子指数= 0.756,平均联合交点= 0.624,结果比其他近期体系结构所产生的结果优于那些。因此,ESFPNET为医师提供了在实时支气管镜呼吸道检查期间自信实时病变细分和检测的潜在工具。此外,我们的模型显示出对其他领域的潜在适用性,如其在CVC-ClinicDB,ETIS-LaribPolypDB数据集上的最先进(SOTA)性能所证明的,并且在KVASIR,CVC-COLONDB数据集中表现出了出色的性能。

Lung cancer tends to be detected at an advanced stage, resulting in a high patient mortality rate. Thus, much recent research has focused on early disease detection Bronchoscopy is the procedure of choice for an effective noninvasive way of detecting early manifestations (bronchial lesions) of lung cancer. In particular, autofluorescence bronchoscopy (AFB) discriminates the autofluorescence properties of normal (green) and diseased tissue (reddish brown) with different colors. Because recent studies show AFB's high sensitivity in searching lesions, it has become a potentially pivotal method in bronchoscopic airway exams. Unfortunately, manual inspection of AFB video is extremely tedious and error prone, while limited effort has been expended toward potentially more robust automatic AFB lesion analysis. We propose a real-time (processing throughput of 27 frames/sec) deep-learning architecture dubbed ESFPNet for accurate segmentation and robust detection of bronchial lesions in AFB video streams. The architecture features an encoder structure that exploits pretrained Mix Transformer (MiT) encoders and an efficient stage-wise feature pyramid (ESFP) decoder structure. Segmentation results from the AFB airway-exam videos of 20 lung cancer patients indicate that our approach gives a mean Dice index = 0.756 and an average Intersection of Union = 0.624, results that are superior to those generated by other recent architectures. Thus, ESFPNet gives the physician a potential tool for confident real-time lesion segmentation and detection during a live bronchoscopic airway exam. Moreover, our model shows promising potential applicability to other domains, as evidenced by its state-of-the-art (SOTA) performance on the CVC-ClinicDB, ETIS-LaribPolypDB datasets, and superior performance on the Kvasir, CVC-ColonDB datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源