论文标题
治疗异质性生存结果
Treatment Heterogeneity for Survival Outcomes
论文作者
论文摘要
有条件平均治疗效果(CATES)的估计通过为患者水平的治疗决策提供信息,在现代医学中起着至关重要的作用。最近,已经提出了几位金属年级人士,以通过重新构建因果估计的预测机器学习模型来以有效且灵活的方式估算CATE。在本章中,我们总结了有关金属年份的文献,并为其在随机对照试验的数据和生存结果的数据中的治疗异质性估计中提供了具体的指导。我们提供的指导得到了一项综合模拟研究的支持,在该研究中,我们改变了基线风险和CATE功能的复杂性,治疗效果中异质性的大小,审查机制以及治疗分配的平衡。为了证明我们的发现的适用性,我们将收缩压干预试验(SPRINT)的数据重新分析,以及控制糖尿病(ACCORC)研究中心血管风险的动作。尽管最近的文献报道了具有多种治疗效应改性剂的强化血压治疗的异质效应,但我们的结果表明,许多这些修饰符可能是虚假发现。本章伴随着Survearners,Replearners是一个R软件包,提供了有据可查的CATE估计策略的实现,以便轻松使用我们的建议以及我们的数值研究的复制。
Estimation of conditional average treatment effects (CATEs) plays an essential role in modern medicine by informing treatment decision-making at a patient level. Several metalearners have been proposed recently to estimate CATEs in an effective and flexible way by re-purposing predictive machine learning models for causal estimation. In this chapter, we summarize the literature on metalearners and provide concrete guidance for their application for treatment heterogeneity estimation from randomized controlled trials' data with survival outcomes. The guidance we provide is supported by a comprehensive simulation study in which we vary the complexity of the underlying baseline risk and CATE functions, the magnitude of the heterogeneity in the treatment effect, the censoring mechanism, and the balance in treatment assignment. To demonstrate the applicability of our findings, we reanalyze the data from the Systolic Blood Pressure Intervention Trial (SPRINT) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study. While recent literature reports the existence of heterogeneous effects of intensive blood pressure treatment with multiple treatment effect modifiers, our results suggest that many of these modifiers may be spurious discoveries. This chapter is accompanied by survlearners, an R package that provides well-documented implementations of the CATE estimation strategies described in this work, to allow easy use of our recommendations as well as the reproduction of our numerical study.