论文标题
通过机制稀疏性的部分解开
Partial Disentanglement via Mechanism Sparsity
论文作者
论文摘要
最近引入了通过机制稀疏性的解剖,作为一种原则方法,是一种在没有监督的情况下提取潜在因素的原则方法。但是,该理论仅适用于满足特定标准的基础图。在这项工作中,我们介绍了该理论的概括,该理论适用于任何地面图形,并通过与我们称之为一致性的模型的新等价关系进行定性地指定了如何删除学习的表示形式。这种等价捕获了哪些因素预计将保持纠缠,哪些因素不基于地面图形的特定形式。我们称这种较弱的可识别性部分分解形式。允许在早期作品中提出的完全分离的图形标准可以作为我们理论的特殊情况得出。最后,我们以受约束的优化实施图形稀疏性,并在模拟中说明了我们的理论和算法。
Disentanglement via mechanism sparsity was introduced recently as a principled approach to extract latent factors without supervision when the causal graph relating them in time is sparse, and/or when actions are observed and affect them sparsely. However, this theory applies only to ground-truth graphs satisfying a specific criterion. In this work, we introduce a generalization of this theory which applies to any ground-truth graph and specifies qualitatively how disentangled the learned representation is expected to be, via a new equivalence relation over models we call consistency. This equivalence captures which factors are expected to remain entangled and which are not based on the specific form of the ground-truth graph. We call this weaker form of identifiability partial disentanglement. The graphical criterion that allows complete disentanglement, proposed in an earlier work, can be derived as a special case of our theory. Finally, we enforce graph sparsity with constrained optimization and illustrate our theory and algorithm in simulations.