论文标题
广义堤和Motzkin路径的组合
Combinatorics of generalized Dyck and Motzkin paths
论文作者
论文摘要
我们将周期性广义Dyck和Motzkin路径的组合与遵守广义排除统计的颗粒的群集系数联系起来,并获得明确的表达式,以计算每个垂直坐标的每种步骤固定数量的路径。分析中出现了一类整数路径长度的广义组成。
We relate the combinatorics of periodic generalized Dyck and Motzkin paths to the cluster coefficients of particles obeying generalized exclusion statistics, and obtain explicit expressions for the counting of paths with a fixed number of steps of each kind at each vertical coordinate. A class of generalized compositions of the integer path length emerges in the analysis.