论文标题

FlowGen:快速和缓慢的图生成

FLOWGEN: Fast and slow graph generation

论文作者

Madaan, Aman, Yang, Yiming

论文摘要

机器学习系统通常将相同的模型应用于简单和艰难的案例。这与人类形成鲜明对比的是,人类倾向于快速(本能)或缓慢(分析)思维,具体取决于问题难度,这种属性称为双重过程的心理理论。我们提出了FlowGen,这是一个灵感来自双过程心理理论的图形生成模型,该理论会逐步生成大图。根据在当前步骤完成图的难度,将图形生成路由到快速(较弱)或缓慢(更强)的模型。这些模块具有相同的体系结构,但参数数量有所不同,因此生成功率有所不同。现实图表上的实验表明,我们的图形可以成功生成类似于单个大型模型生成的图形,同时速度快2倍。

Machine learning systems typically apply the same model to both easy and tough cases. This is in stark contrast with humans, who tend to evoke either fast (instinctive) or slow (analytical) thinking depending on the problem difficulty, a property called the dual-process theory of mind. We present FLOWGEN, a graph-generation model inspired by the dual-process theory of mind that generates large graphs incrementally. Depending on the difficulty of completing the graph at the current step, graph generation is routed to either a fast (weaker) or a slow (stronger) model. These modules have identical architectures, but vary in the number of parameters and consequently differ in generative power. Experiments on real-world graphs show that ours can successfully generate graphs similar to those generated by a single large model, while being up to 2x faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源