论文标题
算法量子加速的演示
Demonstration of algorithmic quantum speedup
论文作者
论文摘要
从理论上讲,量子算法在解决增加大小的问题方面的表现优于经典算法,但是必须将计算错误保持在最低限度以实现这一潜力。尽管发展了越来越强大的量子计算机(QC),但采用当今非耐耐受性的,嘈杂的中间尺度量子(NISQ)设备的可证明算法量子加速的实验证明仍然难以捉摸。在这里,我们明确地证明了这样的加速,该加速器是通过缩放与解决时间度量的问题大小进行量化的。我们实施了单发的伯恩斯坦 - 瓦泽拉尼算法,该算法解决了识别每个Oracle查询后变化的隐藏的斑点的问题,并利用了两个不同的27 Quition IBM量子(IBMQ)超导处理器。当量子计算受动力解耦(DD)保护时,仅在两个QC中的一个(IBMQ_MONTREAL)中观察到加速度 - 施加在QC上的精心设计的脉冲序列抑制了其与环境的相互作用,但并非没有DD。与最近的量子至高无上的演示相反,此处报道的量子加速不依赖于任何其他假设或复杂性理论猜想,并解决了带有Oracle和验证器的游戏的设置。
Quantum algorithms theoretically outperform classical algorithms in solving problems of increasing size, but computational errors must be kept to a minimum to realize this potential. Despite the development of increasingly capable quantum computers (QCs), an experimental demonstration of a provable algorithmic quantum speedup employing today's non-fault-tolerant, noisy intermediate-scale quantum (NISQ) devices has remained elusive. Here, we unequivocally demonstrate such a speedup, quantified in terms of the scaling with the problem size of the time-to-solution metric. We implement the single-shot Bernstein-Vazirani algorithm, which solves the problem of identifying a hidden bitstring that changes after every oracle query, utilizing two different 27-qubit IBM Quantum (IBMQ) superconducting processors. The speedup is observed on only one of the two QCs (ibmq_montreal) when the quantum computation is protected by dynamical decoupling (DD) -- a carefully designed sequence of pulses applied to the QC that suppresses its interaction with the environment, but not without DD. In contrast to recent quantum supremacy demonstrations, the quantum speedup reported here does not rely on any additional assumptions or complexity-theoretic conjectures and solves a bona fide computational problem, in the setting of a game with an oracle and a verifier.