论文标题
风格的精明:使用stylegan的胸部X射线的反事实解释
CheXplaining in Style: Counterfactual Explanations for Chest X-rays using StyleGAN
论文作者
论文摘要
医学图像分析中使用的深度学习模型很容易提高由于其黑箱性质而引起的可靠性问题。为了阐明这些黑盒模型,以前的作品主要集中在识别输入特征对诊断的贡献,即特征属性。在这项工作中,我们探讨了反事实解释,以确定模型依赖于诊断的模式。具体而言,我们研究了胸部X射线内更改特征对分类器输出以了解其决策机制的影响。我们利用一种基于样式的方法(StyleEx)来通过操纵其潜在空间中的特定潜在方向来为胸部X射线做出反事实解释。此外,我们建议本本芬大大减少生成解释的计算时间。我们在放射科医生的帮助下临床评估反事实解释的相关性。我们的代码公开可用。
Deep learning models used in medical image analysis are prone to raising reliability concerns due to their black-box nature. To shed light on these black-box models, previous works predominantly focus on identifying the contribution of input features to the diagnosis, i.e., feature attribution. In this work, we explore counterfactual explanations to identify what patterns the models rely on for diagnosis. Specifically, we investigate the effect of changing features within chest X-rays on the classifier's output to understand its decision mechanism. We leverage a StyleGAN-based approach (StyleEx) to create counterfactual explanations for chest X-rays by manipulating specific latent directions in their latent space. In addition, we propose EigenFind to significantly reduce the computation time of generated explanations. We clinically evaluate the relevancy of our counterfactual explanations with the help of radiologists. Our code is publicly available.