论文标题

稳态中的量子蒙特卡洛

Quantum Monte Carlo in the steady-state

论文作者

Erpenbeck, André, Gull, Emanuel, Cohen, Guy

论文摘要

我们提出了一种用于非平衡量子杂质模型的数值精确的稳态INCH虫方法。该方法不是将初始状态传播到长时间,而是直接在稳态中配制。这消除了跨越瞬态动力学的任何需求,并以极大的降低计算成本授予更大范围的参数范围。我们基于在非互动极限和昆多制度的统一限制中基于green平衡的量子函数。然后,我们考虑与动态平均场理论所描述的相关材料,并通过偏置电压驱动脱离平衡。我们表明,相关材料对偏置电压的响应与在偏置驱动的量子点中观察到的近多共振的分裂有质量不同。

We present a numerically exact steady-state inchworm Monte Carlo method for nonequilibrium quantum impurity models. Rather than propagating an initial state to long times, the method is directly formulated in the steady-state. This eliminates any need to traverse the transient dynamics and grants access to a much larger range of parameter regimes at vastly reduced computational costs. We benchmark the method on equilibrium Green's functions of quantum dots in the noninteracting limit and in the unitary limit of the Kondo regime. We then consider correlated materials described with dynamical mean field theory and driven away from equilibrium by a bias voltage. We show that the response of a correlated material to a bias voltage differs qualitatively from the splitting of the Kondo resonance observed in bias-driven quantum dots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源