论文标题

一种新型的基于人造神经网络的简化跟踪策略

A novel Artificial Neural Network-based streamline tracing strategy applied to hypersonic waverider design

论文作者

Rao, Anagha G, S, Umesh Siddarth U, Rao, Srisha M V

论文摘要

在锥形高血压流中进行简化的跟踪对于设计高性能的Waverider和摄入量至关重要。通常,在从轴对称锥形流场的溶液中获得速度场后,可以解决流线方程。高超音速发动机形状是通过沿几个平面施加流线路跟踪方法来从基本圆锥流场产生的。在探索优化Waverider的设计空间时,流线路跟踪在计算上可能很昂贵。我们提供了一种新颖的策略,首先,对于无粘性轴对称锥形流场的Taylor-Maccoll方程,并在较大的圆锥角度和明智的条件下解决了冲击的流线,从而导致了广泛的数据库。流线通过三阶多项式进行了参数化,并训练了人工神经网络(ANN),以预测多项式的系数,以用于马赫数,锥角,锥角度和流线源位于冲击的位置的任意输入。我们将此策略应用于设计锥体衍生的Waverider,并将其与标准锥形Waverider设计方法和简化的Waverider设计方法进行比较。 ANN技术非常准确,在Waverider的坐标中,标准为0.68%。 RANS计算表明,ANN衍生的Waverider并不表示前缘处的​​严重流动溢出,这在通过简化方法产生的Waverider中观察到。新的基于ANN的方法的速度比常规方法快20倍。

Streamline tracing in conical hypersonic flows is essential for designing high-performance waverider and intake. Conventionally, the streamline equations are solved after obtaining the velocity field from the solution of the axisymmetric conical flow field. The hypersonic waverider shape is generated from the base conical flow field by repeatedly applying the streamline tracing approach along several planes. When exploring the design space for optimization of the waverider, streamline tracing can be computationally expensive. We provide a novel strategy where first the Taylor-Maccoll equations for the inviscid axisymmetric conical flowfield and the streamlines from the shock are solved for a wide range of cone angle and Mach number conditions resulting in an extensive database. The streamlines are parametrized by a third-order polynomial, and an Artificial Neural Network (ANN) is trained to predict the coefficients of the polynomial for arbitrary inputs of Mach number, cone angle, and streamline originating location on the shock . We apply this strategy to design a cone derived waverider and compare the geometry obtained with the standard conical waverider design method and the simplified waverider design method. The ANN technique is highly accurate, with a difference of 0.68% with the standard in the coordinates of the waverider. RANS computations show that the ANN derived waverider does not indicate severe flow spillage at the leading edge, which is observed in the waverider generated from the simplified method. The new ANN-based approach is 20 times faster than the conventional method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源