论文标题
最大彩色路径及以后的固定参数障碍性
Fixed-Parameter Tractability of Maximum Colored Path and Beyond
论文作者
论文摘要
我们引入了一种通用方法,用于获取有关在无向图中查找路径的问题的固定参数算法,其中该路径的长度可能在参数中不受限制。我们方法的第一个应用如下。 我们提供了一种随机算法,该算法给出了一个彩色的$ n $ vertex无向图,Vertices $ s $和$ t $以及一个整数$ k $,发现$(s,t)$ - 路径至少包含$ k $不同的颜色,$ 2^k n^{o(1)} $。这是该问题的第一种FPT算法,它概括了Björklund,Husfeldt和Taslaman的算法[Soda 2012],目的是通过$ K $指定的顶点找到一条路径。这也意味着第一个$ 2^k n^{o(1)} $ time算法找到$(s,t)$ - 长度至少至少$ k $的路径。 我们的方法产生了FPT算法的更常见问题。例如,我们考虑输入由$ n $ vertex组成的问题,无向图$ g $,一个矩阵$ m $,其元素对应于$ g $的元素,并且在订单$ q $的有限范围内表示,它在$ g $的$ q $的有限范围内表示,这是$ g $的$ g $,两套Vertices $ $ $ s $ s $ s $ s $ s,任务是找到从$ s $到$ t $的$ p $ pertex-dischaint路径,以便这些路径的顶点的结合包含独立的$ M $基数$ k $和重量$ w $,同时最大程度地减少了路径长度的总和。我们给出了$ 2^{p+o(k^2 \ log(q+k))} n^{o(1)} w $ time随机算法的此问题。
We introduce a general method for obtaining fixed-parameter algorithms for problems about finding paths in undirected graphs, where the length of the path could be unbounded in the parameter. The first application of our method is as follows. We give a randomized algorithm, that given a colored $n$-vertex undirected graph, vertices $s$ and $t$, and an integer $k$, finds an $(s,t)$-path containing at least $k$ different colors in time $2^k n^{O(1)}$. This is the first FPT algorithm for this problem, and it generalizes the algorithm of Björklund, Husfeldt, and Taslaman [SODA 2012] on finding a path through $k$ specified vertices. It also implies the first $2^k n^{O(1)}$ time algorithm for finding an $(s,t)$-path of length at least $k$. Our method yields FPT algorithms for even more general problems. For example, we consider the problem where the input consists of an $n$-vertex undirected graph $G$, a matroid $M$ whose elements correspond to the vertices of $G$ and which is represented over a finite field of order $q$, a positive integer weight function on the vertices of $G$, two sets of vertices $S,T \subseteq V(G)$, and integers $p,k,w$, and the task is to find $p$ vertex-disjoint paths from $S$ to $T$ so that the union of the vertices of these paths contains an independent set of $M$ of cardinality $k$ and weight $w$, while minimizing the sum of the lengths of the paths. We give a $2^{p+O(k^2 \log (q+k))} n^{O(1)} w$ time randomized algorithm for this problem.