论文标题
重新审视Q形式的逻辑图的动态
Revisiting the dynamic of Q-deformed logistic maps
论文作者
论文摘要
我们考虑逻辑家族并应用$ q $ -DEFORMATION $ ϕ_Q(x)= \ frac {1-q^x} {1-q} $。我们研究了$ q $ formed的逻辑图的固定点的稳定区域以及通过拓扑熵和Lyapunov指数复杂的动态复杂的区域。我们的结果表明,这个变形家庭的动态比[8]中研究的$ q $ formenformed家族的动力更丰富。
We consider the logistic family and apply the $q$-deformation $ϕ_q(x)=\frac{1-q^x}{1-q}$. We study the stability regions of the fixed points of the $q$-deformed logistic map and the regions where the dynamic is complex through topological entropy and Lyapunov exponents. Our results show that the dynamic of this deformed family is richer than that of the $q$-deformed family studied in [8].