论文标题

来自唾液学数据的COVID-19严重程度的机器学习预测

Machine Learning Prediction of COVID-19 Severity Levels From Salivaomics Data

论文作者

Wang, Aaron, Li, Feng, Chiang, Samantha, Fulcher, Jennifer, Yang, Otto, Wong, David, Wei, Fang

论文摘要

严重急性呼吸综合征冠状病毒2(SARS-COV-2)的临床光谱是导致COVID-19-19大流行的冠状病毒菌株,它是广泛的,从无症状的感染延伸到严重的免疫肺反应,即如果不当分类,可能是生命的。研究人员根据COVID-19的严重程度的严重程度,将COVID-19患者的评价从1到8级评价,1个健康,8个患者非常病,基于多种因素,包括诊所的数量,这是自症状的第一个迹象以来的天数等。但是,当前严重程度级别指定的状态有两个问题。首先,研究人员在确定这些患者评分方面存在差异,这可能导致治疗不当。其次,研究人员使用各种指标来确定患者的严重程度,包括涉及需要侵入性程序的血浆收集的指标。该项目旨在通过引入一个机器学习框架来解决这两个问题,该机器学习框架统一了基于无创唾液生物标志物的严重程度水平的名称。我们的结果表明,我们可以在唾液学数据上成功使用机器学习来预测COVID-19患者的严重程度,表明使用唾液生物标志物存在病毒载量。

The clinical spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the strain of coronavirus that caused the COVID-19 pandemic, is broad, extending from asymptomatic infection to severe immunopulmonary reactions that, if not categorized properly, may be life-threatening. Researchers rate COVID-19 patients on a scale from 1 to 8 according to the severity level of COVID-19, 1 being healthy and 8 being extremely sick, based on a multitude of factors including number of clinic visits, days since the first sign of symptoms, and more. However, there are two issues with the current state of severity level designation. Firstly, there exists variation among researchers in determining these patient scores, which may lead to improper treatment. Secondly, researchers use a variety of metrics to determine patient severity level, including metrics involving plasma collection that require invasive procedures. This project aims to remedy both issues by introducing a machine learning framework that unifies severity level designations based on noninvasive saliva biomarkers. Our results show that we can successfully use machine learning on salivaomics data to predict the severity level of COVID-19 patients, indicating the presence of viral load using saliva biomarkers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源