论文标题

支持3设计的无限循环和否定码家族

Infinite families of cyclic and negacyclic codes supporting 3-designs

论文作者

Wang, Xiaoqiang, Tang, Chunming, Ding, Cunsheng

论文摘要

编码理论与组合$ t $ - 设计之间的相互作用是组合主义者和编码理论家多年来的热门话题。在过去的50年中,建造了一些无限循环代码的家庭,这些循环代码为$ 3 $ designs的家属建成。但是,文献中尚无一系列无限的否定码家族来支持无限的$ 3 $ designs。这是本文的主要动机。令$ q = p^m $,其中$ p $是一个奇数,$ m \ geq 2 $是整数。本文的目的是在$ \ gf(q)上介绍一个无限的环保代码家族,该家族支持一个无限的$ 3 $ designs家族和两个超过$ \ gf(q^2)$的无限型否定代码家族,支持两个无限的家族$ 3 $ designs。确定这些代码的参数和权重分布。研究了这些NegacyClic代码的子场子代码(Q)$。还提出了三个无限的MDS代码家族。本文还介绍了一本支持$ 4 $ - 设计和六个开放问题的GF($ 4 $)上的Constacyclic代码($ 4 $)。

Interplay between coding theory and combinatorial $t$-designs has been a hot topic for many years for combinatorialists and coding theorists. Some infinite families of cyclic codes supporting infinite families of $3$-designs have been constructed in the past 50 years. However, no infinite family of negacyclic codes supporting an infinite family of $3$-designs has been reported in the literature. This is the main motivation of this paper. Let $q=p^m$, where $p$ is an odd prime and $m \geq 2$ is an integer. The objective of this paper is to present an infinite family of cyclic codes over $\gf(q)$ supporting an infinite family of $3$-designs and two infinite families of negacyclic codes over $\gf(q^2)$ supporting two infinite families of $3$-designs. The parameters and the weight distributions of these codes are determined. The subfield subcodes of these negacyclic codes over $\gf(q)$ are studied. Three infinite families of almost MDS codes are also presented. A constacyclic code over GF($4$) supporting a $4$-design and six open problems are also presented in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源