论文标题

通过分配强大的内存演变来改善无任务的持续学习

Improving Task-free Continual Learning by Distributionally Robust Memory Evolution

论文作者

Wang, Zhenyi, Shen, Li, Fang, Le, Suo, Qiuling, Duan, Tiehang, Gao, Mingchen

论文摘要

无任务的持续学习(CL)旨在学习非平稳数据流,而无需明确的任务定义,不要忘记以前的知识。广泛采用的内存重播方法对于长数据流而逐渐变得较低,因为该模型可能会记住存储的示例并过度拟合内存缓冲区。其次,现有方法忽略了内存数据分布的高不确定性,因为内存数据分布与所有先前数据示例的分布之间存在很大差异。为了解决这些问题,我们首次提出了一个原则的内存演进框架,以使内存缓冲区逐渐难以通过分布强大的优化(DRO)来动态发展内存数据分布。然后,我们得出了一个方法家族,以使用Wasserstein梯度流(WGF)来进化连续概率的存储缓冲数据。所提出的DRO是W.R.T最糟糕的存储器数据分布,因此保证了模型性能,并且比现有基于内存重新播放的方法更加可靠的功能。对现有基准测试的广泛实验证明了拟议方法减轻遗忘的有效性。作为所提出的框架的副产品,与现有的无任务CL方法相比,我们的方法对对抗性示例更强大。代码可在github \ url {https://github.com/joey-wang123/dro-task-free}上找到。

Task-free continual learning (CL) aims to learn a non-stationary data stream without explicit task definitions and not forget previous knowledge. The widely adopted memory replay approach could gradually become less effective for long data streams, as the model may memorize the stored examples and overfit the memory buffer. Second, existing methods overlook the high uncertainty in the memory data distribution since there is a big gap between the memory data distribution and the distribution of all the previous data examples. To address these problems, for the first time, we propose a principled memory evolution framework to dynamically evolve the memory data distribution by making the memory buffer gradually harder to be memorized with distributionally robust optimization (DRO). We then derive a family of methods to evolve the memory buffer data in the continuous probability measure space with Wasserstein gradient flow (WGF). The proposed DRO is w.r.t the worst-case evolved memory data distribution, thus guarantees the model performance and learns significantly more robust features than existing memory-replay-based methods. Extensive experiments on existing benchmarks demonstrate the effectiveness of the proposed methods for alleviating forgetting. As a by-product of the proposed framework, our method is more robust to adversarial examples than existing task-free CL methods. Code is available on GitHub \url{https://github.com/joey-wang123/DRO-Task-free}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源