论文标题
通过动态图中的局部扩散在社交媒体上估算情绪传播
Estimating Emotion Contagion on Social Media via Localized Diffusion in Dynamic Graphs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present a computational approach for estimating emotion contagion on social media networks. Built on a foundation of psychology literature, our approach estimates the degree to which the perceivers' emotional states (positive or negative) start to match those of the expressors, based on the latter's content. We use a combination of deep learning and social network analysis to model emotion contagion as a diffusion process in dynamic social network graphs, taking into consideration key aspects like causality, homophily, and interference. We evaluate our approach on user behavior data obtained from a popular social media platform for sharing short videos. We analyze the behavior of 48 users over a span of 8 weeks (over 200k audio-visual short posts analyzed) and estimate how contagious the users with whom they engage with are on social media. As per the theory of diffusion, we account for the videos a user watches during this time (inflow) and the daily engagements; liking, sharing, downloading or creating new videos (outflow) to estimate contagion. To validate our approach and analysis, we obtain human feedback on these 48 social media platform users with an online study by collecting responses of about 150 participants. We report users who interact with more number of creators on the platform are 12% less prone to contagion, and those who consume more content of `negative' sentiment are 23% more prone to contagion. We will publicly release our code upon acceptance.