论文标题
个性化的零拍摄心电图心律失常监测系统:从基于稀疏表示的域的适应到能源有效的异常节拍检测,用于实用的ECG监视
A Personalized Zero-Shot ECG Arrhythmia Monitoring System: From Sparse Representation Based Domain Adaption to Energy Efficient Abnormal Beat Detection for Practical ECG Surveillance
论文作者
论文摘要
本文提出了一个低成本且高度准确的心电图监测系统,该系统旨在针对可穿戴移动传感器的个性化早期心律失常检测。对个性化心电图监测的早期监督方法需要异常和正常的心跳来训练专用分类器。但是,在真实的情况下,个性化算法嵌入了可穿戴设备中,这种训练数据不能用于没有心脏障碍病史的健康人。在这项研究中,(i)我们对通过稀疏字典学习获得的健康信号空间进行了无空间分析,并研究了与基于稀疏表示的分类相比,简单的空空间投影或基于最小二乘的分类方法如何降低计算复杂性,而无需牺牲检测准确性。 (ii)然后,我们引入了基于稀疏表示的域适应技术,以便将其他现有用户的异常和普通信号投射到新用户的信号空间上,使我们能够训练专用的分类器而无需新用户的任何异常心跳。因此,无需综合心跳产生而无需进行零射击学习。在基准MIT-BIH ECG数据集上进行的一组大量实验表明,当该基于域的基于域的训练数据生成器与简单的1-D CNN分类器一起使用时,该方法以显着的差距优于先前的工作。 (iii)然后,通过组合(i)和(ii),我们提出了一个整体分类器,以进一步提高性能。这种零射门心律失常检测的方法的平均精度水平为98.2%,F1得分为92.8%。最后,使用上述创新提出了一个个性化的节能ECG监测计划。
This paper proposes a low-cost and highly accurate ECG-monitoring system intended for personalized early arrhythmia detection for wearable mobile sensors. Earlier supervised approaches for personalized ECG monitoring require both abnormal and normal heartbeats for the training of the dedicated classifier. However, in a real-world scenario where the personalized algorithm is embedded in a wearable device, such training data is not available for healthy people with no cardiac disorder history. In this study, (i) we propose a null space analysis on the healthy signal space obtained via sparse dictionary learning, and investigate how a simple null space projection or alternatively regularized least squares-based classification methods can reduce the computational complexity, without sacrificing the detection accuracy, when compared to sparse representation-based classification. (ii) Then we introduce a sparse representation-based domain adaptation technique in order to project other existing users' abnormal and normal signals onto the new user's signal space, enabling us to train the dedicated classifier without having any abnormal heartbeat of the new user. Therefore, zero-shot learning can be achieved without the need for synthetic abnormal heartbeat generation. An extensive set of experiments performed on the benchmark MIT-BIH ECG dataset shows that when this domain adaptation-based training data generator is used with a simple 1-D CNN classifier, the method outperforms the prior work by a significant margin. (iii) Then, by combining (i) and (ii), we propose an ensemble classifier that further improves the performance. This approach for zero-shot arrhythmia detection achieves an average accuracy level of 98.2% and an F1-Score of 92.8%. Finally, a personalized energy-efficient ECG monitoring scheme is proposed using the above-mentioned innovations.