论文标题

关于模型不变性与概括之间的强相关性

On the Strong Correlation Between Model Invariance and Generalization

论文作者

Deng, Weijian, Gould, Stephen, Zheng, Liang

论文摘要

概括和不变性是任何机器学习模型的两个基本属性。概括捕获了模型对看不见的数据进行分类的能力,而不变性测量数据转换的模型预测的一致性。现有的研究表明存在积极的关系:概括井的模型应该是某些视觉因素不变的。在这种定性含义的基础上,我们做出了两种贡献。首先,我们引入有效不变性(EI),这是一种简单合理的模型不变性度量,不依赖图像标签。给定对测试图像及其转换版本的预测,EI衡量了预测与何种置信度一致的程度。其次,使用EI计算的不变性得分,我们在泛化和不变性之间进行大规模的定量相关研究,重点是旋转和灰度转换。从以模型为中心的角度来看,我们观察到不同模型的概括和不变性在分布和分布数据集上表现出牢固的线性关系。从以数据集为中心的视图中,我们发现某个模型的精度和不变性在不同的测试集上线性相关。除了这些主要发现外,还讨论了其他次要但有趣的见解。

Generalization and invariance are two essential properties of any machine learning model. Generalization captures a model's ability to classify unseen data while invariance measures consistency of model predictions on transformations of the data. Existing research suggests a positive relationship: a model generalizing well should be invariant to certain visual factors. Building on this qualitative implication we make two contributions. First, we introduce effective invariance (EI), a simple and reasonable measure of model invariance which does not rely on image labels. Given predictions on a test image and its transformed version, EI measures how well the predictions agree and with what level of confidence. Second, using invariance scores computed by EI, we perform large-scale quantitative correlation studies between generalization and invariance, focusing on rotation and grayscale transformations. From a model-centric view, we observe generalization and invariance of different models exhibit a strong linear relationship, on both in-distribution and out-of-distribution datasets. From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets. Apart from these major findings, other minor but interesting insights are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源