论文标题
由差分粘附驱动的生物细胞分选的大规模模拟遵循扩散限制的结构域合并状态
Large-scale simulations of biological cell sorting driven by differential adhesion follow diffusion-limited domain coalescence regime
论文作者
论文摘要
细胞分类,从而在发育过程中起作用的主要集体细胞行为之一,因此,异质细胞混合物分离并形成不同的均质组织。尽管界面能量的差异被认为是细胞分选的可能驱动源,但在差异粘附驱动的细胞分选的动力学定律上没有明确的共识。使用修改的细胞POTTS模型算法,该模型算法在保留细胞的连接时允许有效的模拟,我们在空间和时间上在很大的尺度上进行数值探索细胞分类动力学。对于被培养基包围的细胞的二元混合物,域大小的增加遵循指数$ n = 1/4 $的幂律,独立于混合比率,表明动力学是由圆形域的扩散和合并的主导。我们将这些结果与有关细胞分类的最新数值研究进行了比较,并讨论了算法差异的重要性以及在观察到的缩放率上的边界条件。
Cell sorting, whereby a heterogeneous cell mixture segregates and forms distinct homogeneous tissues, is one of the main collective cell behaviors at work during development. Although differences in interfacial energies are recognized to be a possible driving source for cell sorting, no clear consensus has emerged on the kinetic law of cell sorting driven by differential adhesion. Using a modified Cellular Potts Model algorithm that allows for efficient simulations while preserving the connectivity of cells, we numerically explore cell-sorting dynamics over very large scales in space and time. For a binary mixture of cells surrounded by a medium, increase of domain size follows a power-law with exponent $n=1/4$ independently of the mixture ratio, revealing that the kinetics is dominated by the diffusion and coalescence of rounded domains. We compare these results with recent numerical studies on cell sorting, and discuss the importance of algorithmic differences as well as boundary conditions on the observed scaling.