论文标题

哈勃小行星猎人:ii。通过众包确定HST图像中强烈的重力镜头

Hubble Asteroid Hunter: II. Identifying strong gravitational lenses in HST images with crowdsourcing

论文作者

Garvin, Emily O., Kruk, Sandor, Cornen, Claude, Bhatawdekar, Rachana, Cañameras, Raoul, Merín, Bruno

论文摘要

哈勃太空望远镜(HST)档案构成了丰富的高分辨率图像数据集,以挖掘出强烈的重力透镜。尽管许多HST计划专门针对强镜,但也可以通过其他HST观测值巧合来表现它们。我们的目标是在ESA的近二十年图像中鉴定出非靶向的强力透镜,它是Hubble Space望远镜档案库(EHST),而没有对镜头性质进行任何事先选择。我们在哈勃小行星猎人(HAH)公民科学项目上使用众包来识别强大的小行星小径,并在公开可用的大型视野HST图像中。我们在视觉上检查了由公民科学家标记的234个物体,作为清洁样品并识别真正的镜头的强镜。我们报告了252个强力晶状体候选物的检测,这不是HST观测值的主要目标。其中198个是新的,以前尚未由其他研究报道,包括45个A等级,74 B年级和79 C等级。大多数是银河系式配置。与以前的HST搜索相比,新近检测到的镜头平均幅度为1.3个幅度。具有高分辨率HST成像的强晶状体样本是透镜建模和科学分析的光谱法的理想选择。本文介绍了对镜头的公正搜索,这使我们能够找到包括异国镜头在内的各种镜头配置。我们证明了众包在视觉上识别强镜头和探索大型档案数据集的好处。这项研究表明,在未来的大规模调查中,例如ESA的未来任务欧几里得或JWST档案图像中,将众包与人工智能结合使用以检测和验证强镜头的潜力。

The Hubble Space Telescope (HST) archives constitute a rich dataset of high resolution images to mine for strong gravitational lenses. While many HST programs specifically target strong lenses, they can also be present by coincidence in other HST observations. We aim to identify non-targeted strong gravitational lenses in almost two decades of images from the ESA it Hubble Space Telescope archive (eHST), without any prior selection on the lens properties. We used crowdsourcing on the Hubble Asteroid Hunter (HAH) citizen science project to identify strong lenses, alongside asteroid trails, in publicly available large field-of-view HST images. We visually inspected 2354 objects tagged by citizen scientists as strong lenses to clean the sample and identify the genuine lenses. We report the detection of 252 strong gravitational lens candidates, which were not the primary targets of the HST observations. 198 of them are new, not previously reported by other studies, consisting of 45 A grades, 74 B grades and 79 C grades. The majority are galaxy-galaxy configurations. The newly detected lenses are, on average, 1.3 magnitudes fainter than previous HST searches. This sample of strong lenses with high resolution HST imaging is ideal to follow-up with spectroscopy, for lens modelling and scientific analyses. This paper presents an unbiased search of lenses, which enabled us to find a high variety of lens configurations, including exotic lenses. We demonstrate the power of crowdsourcing in visually identifying strong lenses and the benefits of exploring large archival datasets. This study shows the potential of using crowdsourcing in combination with artificial intelligence for the detection and validation of strong lenses in future large-scale surveys such as ESA's future mission Euclid or in JWST archival images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源